Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water Is 'Designer Fluid' That Helps Proteins Change Shape

According to new research, old ideas about water behavior are all wet.

Ubiquitous on Earth, water also has been found in comets, on Mars and in molecular clouds in interstellar space. Now, scientists say this common fluid is not as well understood as we thought.

“Water, as we know it, does not exist within our bodies,” said Martin Gruebele, a William H. and Janet Lycan Professor of Chemistry at the University of Illinois. “Water in our bodies has different physical properties from ordinary bulk water, because of the presence of proteins and other biomolecules. Proteins change the properties of water to perform particular tasks in different parts of our cells.”

Consisting of two hydrogen atoms and one oxygen atom, water molecules are by far the body’s largest component, constituting about 75 percent of body volume. When bound to proteins, water molecules participate in a carefully choreographed ballet that permits the proteins to fold into their functional, native states. This delicate dance is essential to life.

“While it is well known that water plays an important role in the folding process, we usually only look at the motion of the protein,” said Gruebele, who also is the director of the U. of I.’s Center for Biophysics and Computational Biology, and a researcher at the Beckman Institute. “This is the first time we’ve been able to look at the motion of water molecules during the folding process.”

Using a technique called terahertz absorption spectroscopy, Gruebele and his collaborator Martina Havenith at the Ruhr-University Bochum studied the motions of a protein on a picosecond time scale (a picosecond is 1 trillionth of a second).

The technique, which uses ultrashort laser pulses, also allowed the researchers to study the motions of nearby water molecules as the protein folded into its native state.

The researchers present their findings in a paper published July 23 in the online version of the chemistry journal Angewandte Chemie.

Terahertz spectroscopy provides a window on protein-water rearrangements during the folding process, such as breaking protein-water-hydrogen bonds and replacing them with protein-protein-hydrogen bonds, Gruebele said. The remaking of hydrogen bonds helps organize the structure of a protein.

In tests on ubiquitin, a common protein in cells, the researchers found that water molecules bound to the protein changed to a native-type arrangement much faster than the protein. The water motion helped establish the correct configuration, making it much easier for the protein to fold.

“Water can be viewed as a ‘designer fluid’ in living cells,” Gruebele said. “Our experiments showed that the volume of active water was about the same size as that of the protein.”

The diameter of a single water molecule is about 3 angstroms (an angstrom is about one hundred-millionth of a centimeter), while that of a typical protein is about 30 angstroms. Although the average protein has only 10 times the diameter of a water molecule, it has 1,000 times the volume. Larger proteins can have hundreds of thousands times the volume. A single protein can therefore affect, and be influenced by, thousands of water molecules.

“We previously thought proteins would affect only those water molecules directly stuck to them,” Gruebele said. “Now we know proteins will affect a volume of water comparable to their own. That’s pretty amazing.”

With Gruebele and Havenith, co-authors of the paper are graduate student Seung Joong Kim at the U. of I., and graduate student Benjamin Born at the Ruhr-University Bochum.

Funding was provided by the Human Frontier Science Program and the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:

Further reports about: Computational Biology Gruebele angstrom water molecules

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>