Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching Viruses "Friend" a Network

30.08.2011
TAU develops a Facebook application to track the path of infection

From SARS to swine flu, virus outbreaks can be unpredictable — and devastating. But now a new application through the ubiquitous social networking site Facebook, developed in a Tel Aviv University lab, is poised to serve as a better indicator of how infections spread among populations.

Dr. Gal Almogy and Prof. Nir Ben-Tal of the Department of Biochemistry and Molecular Biology at TAU's George S. Wise Faculty of Life Sciences have developed a Facebook application called PiggyDemic, which allows users to "infect" their friends with a simulated virus or become infected themselves. The resulting patterns will allow researchers to gather information on how a virus mutates, spreads through human interaction, and the number of people it infects. Their research was recently presented at the annual retreat of the Safra Bioinformatics Program.

Programming a social disease

Currently, scientists use mathematical algorithms to determine which virus will spread and how, but this method has some flaws. It assumes that a virus has equal distribution across populations, but that is simply not the case, the researchers say. Patterns of social interaction must also be taken into account. "HIV is concentrated in Africa; certain types of flu are widespread in North America and Asia," explains Dr. Almogy. "Adding the element of human interaction, and looking at the social networks we belong to, is critical for investigating viral interaction."

Facebook, notes Dr. Almogy, is an ideal tool for such an undertaking. The social networking site's digital interactions simulate in-person interactions. Viral infections like the flu are a social phenomena, he explains.

Once added to a user's Facebook account, PiggyDemic follows the user's newsfeed to determine the people they interact with. Users are deemed "susceptible," "immune" or "infected" with various simulated viruses, and can pass them on to their online contacts. Researchers then follow these interactions using network visualization software, and watch the links between users as the "viruses" are passed on.

According to Dr. Almogy, accurate modeling of viral dynamics is critical for developing public health policy. Issues such as the use of vaccinations, medications, quarantine and anti-viral procedures will be better informed if we are able to predict more accurately the course of infection.

Taking your vitamin C

More than a research tool, PiggyDemic is also a game (users try to infect as many of their friends as possible), a teaching tool (users make choices that help them live a healthy life), and potentially a method for high-resolution, real-time tracking of virus outbreaks.

"People who have this software can report if they are actually ill," says Dr. Almogy. "If we know who their friends are and the sequence of the infecting virus, we can figure out which virus they have and how it passes from one person to another." If the network is large enough, he explains, they might be able to post warnings of possible outbreaks to Facebook networks, letting people know when it's time for a hefty dose of vitamin C.

The application has already provided a signficant finding, the researchers report. Flu's peak period, winter, is usually attributed to environmental conditions. But the researchers' findings suggest there are other forces at work.

PiggyDemic's viruses are not explicitly programmed to have a seasonal pattern, and yet like the real-life flu, they also display recurrent peaks of infection. Though researchers are not yet certain what drives these periodic peaks in the PiggyDemic eco-system, they indicate that a simple viral strategy superimposed on the basic structure of human society has a strong tendency to display periodic bursts of viral activity regardless of environmental conditions. "The flu doesn't maintain itself at a steady rate of infection," explains Dr. Almogy. "Yearly peaks of infection may serve instead as 'seeding periods,' similar to the 'blooming' process we see in flowering plants."

To download the application to a Facebook account, go to http://apps.facebook.com/piggydemic/.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>