Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the Developing Brain, Scientists Glean Clues on Neurological Disorder

15.11.2012
As the brain develops, each neuron must find its way to precisely the right spot to weave the intricate network of links the brain needs to function. Like the wiring in a computer, a few misplaced connections can throw off functioning for an entire segment of the brain.

A new study by researchers at the University of North Carolina School of Medicine reveals how some nerve cells, called interneurons, navigate during the development of the cerebral cortex. Mutations in a key gene behind this navigation system underlie a rare neurological disorder called Joubert syndrome; a condition linked with autism spectrum disorders and brain structure malformations.


Eva Anton Lab, UNC School of Medicine

The left panel shows normal neuronal cell organization (red and green). Organization is lost when Arl13b gene is deleted (right panel).

The study was published online on Nov. 12, 2012 by the journal Developmental Cell.

“We were trying to understand how neurons get to the right place at the right time during brain development,” said senior study author Eva Anton, PhD, a professor in the UNC Neuroscience Center and the Department of Cell Biology and Physiology at the UNC School of Medicine.

To do that, the UNC researchers and their collaborator, Dr. Tamara Caspary, at Emory University tracked brain development in mice with and without a gene called Arl13b. They found that the gene, when functioning normally, allows interneurons to use an appendage called the primary cilium as a sensor.

These appendages are found on many types of cells, but scientists did not previously know what they were doing on developing neurons.

“We found that primary cilia play an important role in guiding neurons to their appropriate places during development so that the neurons can wire up appropriately later on,” said Anton. “It’s like an antenna that allows the neuron to read the signals that are out there and navigate to the right target location.”

Neurons in mice without the Arl13b gene or expressing mutant Arl13b found in Joubert syndrome patients essentially had a broken antenna, causing the cells to get lost on the way to their destinations.

Variants of the Arl13b gene are known to cause Joubert syndrome, which is characterized by brain malformations, abnormal eye and tongue movements, low muscle tone and mental retardation. This is one of the first studies to uncover how mutations of this gene actually disrupt brain development.

“Ultimately, if you’re going to come up with therapeutic solutions, it’s important to understand the biology of the disease,” said Anton. “This contributes to our understanding of the biological processes that are disrupted in Joubert syndrome patients.”

Co-authors include Holden Higginbotham, Tae-Yeon Eom, Amelia Bachleda, Joshua Hirt, Vladimir Gukassyana and Corey Cusack from UNC, Laura E. Mariani and Tamara Caspary of Emory University, and Cary Lai of Indiana University, Bloomington.

Les Lang | Newswise Science News
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>