Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the Developing Brain, Scientists Glean Clues on Neurological Disorder

15.11.2012
As the brain develops, each neuron must find its way to precisely the right spot to weave the intricate network of links the brain needs to function. Like the wiring in a computer, a few misplaced connections can throw off functioning for an entire segment of the brain.

A new study by researchers at the University of North Carolina School of Medicine reveals how some nerve cells, called interneurons, navigate during the development of the cerebral cortex. Mutations in a key gene behind this navigation system underlie a rare neurological disorder called Joubert syndrome; a condition linked with autism spectrum disorders and brain structure malformations.


Eva Anton Lab, UNC School of Medicine

The left panel shows normal neuronal cell organization (red and green). Organization is lost when Arl13b gene is deleted (right panel).

The study was published online on Nov. 12, 2012 by the journal Developmental Cell.

“We were trying to understand how neurons get to the right place at the right time during brain development,” said senior study author Eva Anton, PhD, a professor in the UNC Neuroscience Center and the Department of Cell Biology and Physiology at the UNC School of Medicine.

To do that, the UNC researchers and their collaborator, Dr. Tamara Caspary, at Emory University tracked brain development in mice with and without a gene called Arl13b. They found that the gene, when functioning normally, allows interneurons to use an appendage called the primary cilium as a sensor.

These appendages are found on many types of cells, but scientists did not previously know what they were doing on developing neurons.

“We found that primary cilia play an important role in guiding neurons to their appropriate places during development so that the neurons can wire up appropriately later on,” said Anton. “It’s like an antenna that allows the neuron to read the signals that are out there and navigate to the right target location.”

Neurons in mice without the Arl13b gene or expressing mutant Arl13b found in Joubert syndrome patients essentially had a broken antenna, causing the cells to get lost on the way to their destinations.

Variants of the Arl13b gene are known to cause Joubert syndrome, which is characterized by brain malformations, abnormal eye and tongue movements, low muscle tone and mental retardation. This is one of the first studies to uncover how mutations of this gene actually disrupt brain development.

“Ultimately, if you’re going to come up with therapeutic solutions, it’s important to understand the biology of the disease,” said Anton. “This contributes to our understanding of the biological processes that are disrupted in Joubert syndrome patients.”

Co-authors include Holden Higginbotham, Tae-Yeon Eom, Amelia Bachleda, Joshua Hirt, Vladimir Gukassyana and Corey Cusack from UNC, Laura E. Mariani and Tamara Caspary of Emory University, and Cary Lai of Indiana University, Bloomington.

Les Lang | Newswise Science News
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>