Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching chemistry in motion: Chemical environments mapped using molecular vibrations

06.08.2014

Scientists have long known that a molecule's behavior depends on its environment. Taking advantage of this phenomenon, a group of researchers at the University of Chicago developed a new technique to map microscopic environments using the vibrations of molecules.

"It's a special new advance that will be broadly useful in studies of molecular and materials phenomena," said Andrei Tokmakoff, the Henry G. Gale Distinguished Service Professor in Chemistry at UChicago. He and two of his associates report their new technique in a paper published online in the journal Optics Express.


University of Chicago Postdoctoral fellows Carlos Baiz and Denise Schach worked with chemistry Professor Andrei Tokmakoff (not pictured), to develop ultrafast two-dimensional infrared microscopy.

Credit: Robert Kozloff/University of Chicago

The new technique builds on ultrafast two-dimensional infrared spectroscopy, which emerged approximately 15 years ago as a method to probe molecular vibrations. When a laser pulse strikes a molecule, parts of its energy is transferred into the vibrations of the molecule.

The ability of each single molecule to get rid of this excess energy, or relax, depends on the neighbors' ability to accept such energy. Thus molecules in different environments will relax at different rates, which are then used to determine the environment of individual molecules. Combining two-dimensional spectroscopy with a microscope enabled the researchers to directly visualize the microscopic variations in chemical environments.

"It's a new, hybrid technique that combines the spatial resolution of microscopy with the molecular information of infrared spectroscopy," said Carlos R. Baiz, a postdoctoral fellow and the article's lead author. The technique offers data on vibrational dynamics that traditional microscopy lacks, while adding spatial information that infrared spectroscopy alone can't provide.

"The new technique lends itself to multiple applications," said Denise Schach, a postdoctoral fellow in chemistry and co-author of the Optics Express article. "We aim to observe the protein folding process, which is the basis of biological function, inside a single cell." In the future, the new technique might especially benefit research in cellular biology and biomedicine.

Mapping vibrational frequencies

Two-dimensional IR spectroscopy can measure molecular dynamics at the femtosecond (quadrillionth of a second) timescale, which is the vibrational frequency of a chemical bond. The method is used to correlate different vibrational frequencies of a molecule, in order to learn about its structure as well as its chemical environment. Combined with microscopy, the method offers a spatial resolution of 20 microns, about the size of a human skin cell.

"Consider a system of coupled springs: you can pluck one spring and see the energy transfer from this one oscillator to all the other springs in the system," Baiz explained. "It's the same effect with molecules. The laser excites one vibration which then relaxes into other nearby vibrations on the same molecule or its neighbors, and where the vibrational energy ends up tells us about the structure and environment of the molecule."

Multiple factors contributed to the success of Tokmakoff's team, which conducted preliminary experiments for two years at MIT, that enabled the group to plot the best way to develop the new method. Once Tokmakoff joined the UChicago faculty in 2013, his startup funds financed the purchase of the sophisticated and expensive equipment that his team needed to implement the plan.

"The facilities are excellent here" said Baiz, referring to Tokmakoff's laboratory space in the Gordon Center for Integrative Science, which is equipped with stringent temperature and humidity controls, the most technologically advanced optical components, and a brand new microscope.

Also important was the purchase of a new pulse shaper that enabled the researchers to modulate individual laser pulses in a way that traditional optics cannot do, and developing a new way of collecting data that involved a different geometric alignment of the laser beams.

###

Citation: "Ultrafast 2D IR Microscopy," by Carlos R. Baiz, Denise Schach, and Andrei Tokmakoff, Optics Express, Vol. 22, Issue 15, pp. 18724-18735, 2014. http://dx.doi.org/10.1364/OE.22.018724.

Steve Koppes | Eurek Alert!
Further information:
http://www.uchicago.edu

Further reports about: Watching environments frequencies materials skin spatial spectroscopy structure vibrations

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>