Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching chemistry in motion: Chemical environments mapped using molecular vibrations

06.08.2014

Scientists have long known that a molecule's behavior depends on its environment. Taking advantage of this phenomenon, a group of researchers at the University of Chicago developed a new technique to map microscopic environments using the vibrations of molecules.

"It's a special new advance that will be broadly useful in studies of molecular and materials phenomena," said Andrei Tokmakoff, the Henry G. Gale Distinguished Service Professor in Chemistry at UChicago. He and two of his associates report their new technique in a paper published online in the journal Optics Express.


University of Chicago Postdoctoral fellows Carlos Baiz and Denise Schach worked with chemistry Professor Andrei Tokmakoff (not pictured), to develop ultrafast two-dimensional infrared microscopy.

Credit: Robert Kozloff/University of Chicago

The new technique builds on ultrafast two-dimensional infrared spectroscopy, which emerged approximately 15 years ago as a method to probe molecular vibrations. When a laser pulse strikes a molecule, parts of its energy is transferred into the vibrations of the molecule.

The ability of each single molecule to get rid of this excess energy, or relax, depends on the neighbors' ability to accept such energy. Thus molecules in different environments will relax at different rates, which are then used to determine the environment of individual molecules. Combining two-dimensional spectroscopy with a microscope enabled the researchers to directly visualize the microscopic variations in chemical environments.

"It's a new, hybrid technique that combines the spatial resolution of microscopy with the molecular information of infrared spectroscopy," said Carlos R. Baiz, a postdoctoral fellow and the article's lead author. The technique offers data on vibrational dynamics that traditional microscopy lacks, while adding spatial information that infrared spectroscopy alone can't provide.

"The new technique lends itself to multiple applications," said Denise Schach, a postdoctoral fellow in chemistry and co-author of the Optics Express article. "We aim to observe the protein folding process, which is the basis of biological function, inside a single cell." In the future, the new technique might especially benefit research in cellular biology and biomedicine.

Mapping vibrational frequencies

Two-dimensional IR spectroscopy can measure molecular dynamics at the femtosecond (quadrillionth of a second) timescale, which is the vibrational frequency of a chemical bond. The method is used to correlate different vibrational frequencies of a molecule, in order to learn about its structure as well as its chemical environment. Combined with microscopy, the method offers a spatial resolution of 20 microns, about the size of a human skin cell.

"Consider a system of coupled springs: you can pluck one spring and see the energy transfer from this one oscillator to all the other springs in the system," Baiz explained. "It's the same effect with molecules. The laser excites one vibration which then relaxes into other nearby vibrations on the same molecule or its neighbors, and where the vibrational energy ends up tells us about the structure and environment of the molecule."

Multiple factors contributed to the success of Tokmakoff's team, which conducted preliminary experiments for two years at MIT, that enabled the group to plot the best way to develop the new method. Once Tokmakoff joined the UChicago faculty in 2013, his startup funds financed the purchase of the sophisticated and expensive equipment that his team needed to implement the plan.

"The facilities are excellent here" said Baiz, referring to Tokmakoff's laboratory space in the Gordon Center for Integrative Science, which is equipped with stringent temperature and humidity controls, the most technologically advanced optical components, and a brand new microscope.

Also important was the purchase of a new pulse shaper that enabled the researchers to modulate individual laser pulses in a way that traditional optics cannot do, and developing a new way of collecting data that involved a different geometric alignment of the laser beams.

###

Citation: "Ultrafast 2D IR Microscopy," by Carlos R. Baiz, Denise Schach, and Andrei Tokmakoff, Optics Express, Vol. 22, Issue 15, pp. 18724-18735, 2014. http://dx.doi.org/10.1364/OE.22.018724.

Steve Koppes | Eurek Alert!
Further information:
http://www.uchicago.edu

Further reports about: Watching environments frequencies materials skin spatial spectroscopy structure vibrations

More articles from Life Sciences:

nachricht Discovery of an unexpected function of a protein linked to neurodegenerative diseases
28.04.2015 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Rubber from dandelions / Scientists identify key components in the formation of rubber
28.04.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux

28.04.2015 | Innovative Products

Discovery of an unexpected function of a protein linked to neurodegenerative diseases

28.04.2015 | Life Sciences

Rubber from dandelions / Scientists identify key components in the formation of rubber

28.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>