Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using wastewater as fertilizer

01.08.2012
Sewage sludge, wastewater and liquid manure are valuable sources of fertilizer for food production. Fraunhofer researchers have now developed a chemical-free, eco-friendly process that enables the recovered salts to be converted directly into organic food for crop plants.

Phosphorus is a vital element not only for plants but also for all living organisms. In recent times, however, farmers have been faced with a growing shortage of this essential mineral, and the price of phosphate-based fertilizers has been steadily increasing.


Struvite fertilizer recovered from wastewater is a high-quality product that slowly releases nutrients into the soil.
© Fraunhofer IGB

It is therefore high time to start looking for alternatives. This is not an easy task, because phosphorus cannot be replaced by any other substance. But researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have found a solution that makes use of locally available resources which, as unlikely as it might seem, are to be found in plentiful supply in the wastewater from sewage treatment plants and in the fermentation residues from biogas plants: a perfect example of the old saying “from muck to riches”. The new process was developed by a team of scientists led by Jennifer Bilbao, who manages the nutrient management research group at the IGB. “Our process precipitates out the nutrients in a form that enables them to be directly applied as fertilizer,” she explains.

Mobile pilot plant for field tests

The main feature of the patented process, which is currently being tested in a mobile pilot plant, is an electrochemical process that precipitates magnesium-ammonium phosphate – also known as struvite – by means of electrolysis from a solution containing nitrogen and phosphorus. Struvite is precipitated from the process water in the form of tiny crystals that can be used directly as fertilizer, without any further processing. The innovative aspect of this method is that, unlike conventional processes, it does not require the addition of synthetic salts or bases. Bilbao: “It is an entirely chemical-free process.”

The 2-meter-high electrolytic cell that forms the centerpiece of the test installation and through which the wastewater is directed contains a sacrificial magnesium anode and a metallic cathode. The electrolytic process splits the water molecules into negatively charged hydroxyl ions at the cathode. At the anode an oxidation takes place: the magnesium ions migrate through the water and react with the phosphate and ammonium molecules in the solution to form struvite.

Energy-saving, chemical-free process

Because the magnesium ions in the process water are highly reactive, this method requires very little energy. The electrochemical process therefore consumes less electricity than conventional methods. For all types of wastewater tested so far, the necessary power never exceeded the extremely low value of 70 watt-hours per cubic meter. Moreover, long-duration tests conducted by the IGB researchers demonstrated that the concentration of phosphorus in the pilot plant’s reactor was reduced by 99.7 percent to less than 2 milligrams per liter. This is lower than the maximum concentration permitted by the German Waste Water Ordinance (AbwV) for treatment plants serving communities of up to 100,000 inhabitants. “This means that operators of such plants could generate additional revenue from the production of fertilizer as a sideline to the treatment of wastewater,” says Bilbao, citing this as a decisive advantage. Struvite is an attractive product for farmers, because it is valued as a high-quality, slow-release fertilizer. Experiments conducted by the Fraunhofer researchers have confirmed its effectiveness in this respect: crop yields and the uptake of nutrients by the growing plants were up to four times higher with struvite than with commercially available mineral fertilizers.

The scientists intend to spend the next few months testing the mobile pilot plant at a variety of wastewater treatment plants before starting to commercialize the process in collaboration with industrial partners early next year. “Our process is also suitable for wastewaters from the food-industry and from the production of biogas from agricultural wastes,” adds Bilbao. The only prerequisite is that the process water should be rich in ammonium and phosphates.

M.Sc. Jennifer Bilbao | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/using-wastewater-as-fertilizer.html

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>