Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste from Gut Bacteria Helps Host Control Weight

21.10.2008
A single molecule in the intestinal wall, activated by the waste products from gut bacteria, plays a large role in controlling whether the host animals are lean or fatty, a research team, including scientists from UT Southwestern Medical Center, has found in a mouse study.

When activated, the molecule slows the movement of food through the intestine, allowing the animal to absorb more nutrients and thus gain weight. Without this signal, the animals weigh less.

The study shows that the host can use bacterial byproducts not only as a source of nutrients, but also as chemical signals to regulate body functions. It also points the way to a potential method of controlling weight, the researchers said.

“It’s quite possible that blocking this receptor molecule in the intestine might fight a certain kind of obesity by blocking absorption of energy from the gut,” said Dr. Masashi Yanagisawa, professor of molecular genetics at UT Southwestern and a senior co-author of the study, which appears online in Proceedings of the National Academy of Sciences.

Humans, like other animals, have a large and varied population of beneficial bacteria that live in the intestines. The bacteria break up large molecules that the host cannot digest. The host in turn absorbs many of the resulting small molecules for energy and nutrients.

“The number of bacteria in our gut far exceeds the total number of cells in our bodies,” said Dr. Yanagisawa.

“It’s truly a mutually beneficial relationship. We provide the bacteria with food, and in return they supply energy and nutrients,” he explained.

Using mice, the researchers focused on two species of bacteria that break up dietary fibers from food into small molecules called short-chain fatty acids. Dr. Yanagisawa’s team previously had found that short-chain fatty acids bind to and activate a receptor molecule in the gut wall called Gpr41, although little was known about the physiological outcome of Gpr41 activation.

The researchers disrupted communication between the bacteria and the hosts in two ways: raising normal mice under germ-free conditions so they lacked the bacteria, and genetically engineering other mice to lack Gpr41 so they were unable to respond to the bacteria.

In both cases, the mice weighed less and had a leaner build than their normal counterparts even though they all ate the same amount.

The researchers also found that in mice without Gpr41, the intestines passed food more quickly. They hypothesized that one action of Gpr41 is to slow down the motion that propels food forward, so that more nutrients can be absorbed. Thus, if the receptor cannot be activated, food is expelled more quickly, and the animal gets less energy from it.

Because mice totally lacking Gpr41 were still healthy and had intestinal function, the receptor may be a likely target for drugs that can slow, but not stop, energy intake, Dr. Yanagisawa said.

Other UT Southwestern researchers involved in the study were co-lead author and graduate student Abdullah Shaito; Dr. Toshiyuki Motoike, assistant professor of molecular genetics; research specialist Clay Willams; and Dr. Robert Hammer, professor of biochemistry. Researchers from Washington University School of Medicine, the Japan Science and Technology Agency and Howard Hughes Medical Institute in Chevy Chase, Md., also participated.

The study was funded by the National Science Foundation, the National Institutes of Health, the W.M. Keck Foundation, the Japan Science and Technology Agency and HHMI.

Dr. Masashi Yanagisawa -- http://www.utsouthwestern.edu/findfac/professional/0,2356,18207,00.html

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu

Further reports about: GPR41 Host Waste Yanagisawa bacteria fatty acids intestine molecular genetics nutrients receptor single molecule

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>