Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste from Gut Bacteria Helps Host Control Weight

21.10.2008
A single molecule in the intestinal wall, activated by the waste products from gut bacteria, plays a large role in controlling whether the host animals are lean or fatty, a research team, including scientists from UT Southwestern Medical Center, has found in a mouse study.

When activated, the molecule slows the movement of food through the intestine, allowing the animal to absorb more nutrients and thus gain weight. Without this signal, the animals weigh less.

The study shows that the host can use bacterial byproducts not only as a source of nutrients, but also as chemical signals to regulate body functions. It also points the way to a potential method of controlling weight, the researchers said.

“It’s quite possible that blocking this receptor molecule in the intestine might fight a certain kind of obesity by blocking absorption of energy from the gut,” said Dr. Masashi Yanagisawa, professor of molecular genetics at UT Southwestern and a senior co-author of the study, which appears online in Proceedings of the National Academy of Sciences.

Humans, like other animals, have a large and varied population of beneficial bacteria that live in the intestines. The bacteria break up large molecules that the host cannot digest. The host in turn absorbs many of the resulting small molecules for energy and nutrients.

“The number of bacteria in our gut far exceeds the total number of cells in our bodies,” said Dr. Yanagisawa.

“It’s truly a mutually beneficial relationship. We provide the bacteria with food, and in return they supply energy and nutrients,” he explained.

Using mice, the researchers focused on two species of bacteria that break up dietary fibers from food into small molecules called short-chain fatty acids. Dr. Yanagisawa’s team previously had found that short-chain fatty acids bind to and activate a receptor molecule in the gut wall called Gpr41, although little was known about the physiological outcome of Gpr41 activation.

The researchers disrupted communication between the bacteria and the hosts in two ways: raising normal mice under germ-free conditions so they lacked the bacteria, and genetically engineering other mice to lack Gpr41 so they were unable to respond to the bacteria.

In both cases, the mice weighed less and had a leaner build than their normal counterparts even though they all ate the same amount.

The researchers also found that in mice without Gpr41, the intestines passed food more quickly. They hypothesized that one action of Gpr41 is to slow down the motion that propels food forward, so that more nutrients can be absorbed. Thus, if the receptor cannot be activated, food is expelled more quickly, and the animal gets less energy from it.

Because mice totally lacking Gpr41 were still healthy and had intestinal function, the receptor may be a likely target for drugs that can slow, but not stop, energy intake, Dr. Yanagisawa said.

Other UT Southwestern researchers involved in the study were co-lead author and graduate student Abdullah Shaito; Dr. Toshiyuki Motoike, assistant professor of molecular genetics; research specialist Clay Willams; and Dr. Robert Hammer, professor of biochemistry. Researchers from Washington University School of Medicine, the Japan Science and Technology Agency and Howard Hughes Medical Institute in Chevy Chase, Md., also participated.

The study was funded by the National Science Foundation, the National Institutes of Health, the W.M. Keck Foundation, the Japan Science and Technology Agency and HHMI.

Dr. Masashi Yanagisawa -- http://www.utsouthwestern.edu/findfac/professional/0,2356,18207,00.html

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu

Further reports about: GPR41 Host Waste Yanagisawa bacteria fatty acids intestine molecular genetics nutrients receptor single molecule

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>