Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waseda University team sheds light on self-organization of biological structures

02.12.2013
Researchers at Waseda University in Japan have identified key information to help explain the formation of the “spindle apparatus”, a structure required for cell division. Their findings shed light on the mechanisms behind “self-organization” – an essential characteristic of biological structures.

Organisms are composed of a variety of structures including muscles, internal organs, and brains, all of which are created through a process known as self-organization. In a study published in the online journal, Cell Reports, the research team examined how the spindle apparatus self-organizes. Composed of fibrous molecules called microtubules, this structure is responsible for the segregation of chromosomes between daughter cells.

Researchers around the world are interested in the mechanisms of spindle formation because if chromosome segregation does not take place correctly in human cells, the process can cause cancer or birth defects. Previous studies have identified molecular motors and a range of other molecules involved in spindle formation. But certain fundamental data remain missing, particularly concerning the relationship between the amount of microtubules and the size and shape of spindles.

Using fluorescence microscopy, Jun Takagi and his colleagues at Waseda University observed self-organizing spindles from the eggs of aquatic frogs. Based on their observations, the team derived a simple mathematical model describing the relationship between the size and shape of the spindle apparatus and the density and amount of microtubules. This successful characterization of the key parameters that determine spindle structures during self-organization is particularly useful in understanding the physical mechanisms of ‘self-organization’ in orderly structures.

For more information, contact:
[ Ryohei Matsuoka, PR Office at Waseda University, koho@list.waseda.jp ]

BACKGROUND AND PURPOSE OF THE STUDY
Organisms are composed of a variety of structures including muscles, internal organs, and brains, all of which are created through a process known as self-organization. In the present study, our focus was on the spindle apparatus, a structure responsible for the segregation of chromosomes between daughter cells. The spindle apparatus is formed by self-organization, through molecular-motor assisted assemblage and orientation of fibrous polymers called microtubules. Many researchers around the world have been studying the mechanisms of spindle formation because, if chromosome segregation does not take place correctly, it can cause cancer or birth defects. Previous studies have identified molecular motors and a range of other molecules involved in spindle formation. Certain fundamental data remain missing, however, particularly on the relationship among the amount of microtubules and the size and shape of spindles. Our aim was to investigate the quantitative relationship among those parameters by using physical techniques.
■ Techniques developed during the study
Spindle apparatus assumes a 3D structure and, in metaphase, it looks like a rugby ball (see Figure 1 above). While most previous studies used epifluorescence microscopy to observe spindles two-dimensionally, we employed 3D observation using confocal fluorescence microscopy in order to determine the size and shape of spindles more accurately. Thanks to the 3D observation approach, we were able to perform quantitative analysis of 3D asymmetry in deformed spindles. Additionally, fluorescence labeling of microtubules allowed accurate measurement of spindle volume and the amount and density of microtubules in each spindle.

We also established a technique for cutting a spindle into two halves using glass microneedles (

■ Results and conclusions drawn from the study

Our 3D observation of metaphase spindles that self-organized in Xenopus egg extracts revealed that spindle shape and microtubule density were constant irrespective of spindle size, whereas spindle size was correlated with the microtubule amount. We quantitatively defined the spindle shape and the microtubule density, based on which we successfully derived a simple equation describing the relationship among all the parameters. In this equation, spindle size is explained by microtubule amount in addition to the other parameters that are independent of spindle size (i.e., the spindle shape and microtubule density).

When a spindle was cut into two fragments using glass microneedles, each fragment regained its original spindle shape and microtubule density within five minutes of cutting (Figure 3). This indicates that the independent associations between spindle size and spindle shape or microtubule density was maintained even in the cut fragments. Regarding the microtubule amount in each fragment, it was reduced by half or more due to cutting and, at the same time, each fragment became smaller than the original spindle. These findings again indicate preservation of the correlation between spindle size and microtubule amount in the cut fragments. Furthermore, when two cut fragments were allowed to contact each other, they fused together and eventually became a single spindle resembling the one before cutting (Figure 3).

These results demonstrate that spindle size is correlated with microtubule amount, and that spindle shape and microtubule density are dynamically maintained and unaffected by the physical intervention of ‘cutting.’

■ Potentially universal effects and social significance of the study
Our successful characterization of the key parameters that determine spindle structures during self-organization is particularly useful in understanding the physical mechanisms of ‘self-organization’ in orderly structures. It is also expected to help elucidate how chromosome segregation is precisely achieved, which is of great importance from a biological as well as medical viewpoint. We believe our findings give clues to the mechanisms of self-organization seen in various other biological structures and, eventually, will facilitate designing of artificial structures utilizing biological materials.

Journal information

The study reported here was conducted with the financial support of a Grant-in-Aid for Scientific Research. The results have been published in an article entitled ‘Using micromanipulation to analyze control of vertebrate meiotic spindle size’ in Cell Reports, an online journal from Cell Press.
Authors:
○ Jun Takagi, Research Associate, Faculty of Science and Engineering, Waseda University
○ Takeshi Itabashi, Lecturer, Faculty of Science and Engineering, Waseda University
○ Kazuya Suzuki, Ph.D. Candidate, Faculty of Science and Engineering, Waseda University; JSPS (Japan Society for the Promotion of Science) Research Fellow (DC1)
○ Tarun M. Kapoor, Professor, Rockefeller University
○ Yuta Shimamoto, Postdoctoral Fellow, Rockefeller University
○ Shin’ichi Ishiwata, Professor, Faculty of Science and Engineering, Waseda University; and Director, Waseda Bioscience Research Institute in Singapore (WABIOS)

Waseda University | Research asia research news
Further information:
http://www.waseda.jp/
http://www.researchsea.com
http://www.researchsea.com/html/article.php/aid/7986/cid/1?

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>