Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warning Lights Mark Shellfish That Aren't Safe To Eat

16.12.2010
Red tides and similar blooms can render some seafood unsafe to eat, though it can be difficult to tell whether a particular batch harbors toxins that cause food poisoning.

Blue specks rimming these dinoflagellates mark bacteria that are helping to produce dangerous toxins.

A new kind of marker developed by chemists at the University of California, San Diego, and reported in the journal ChemComm makes it easier to see if shellfish are filled with toxin-producing organisms.

Mussels and oysters accumulate single-celled marine creatures called dinoflagellates in their digestive systems as they filter seawater for food. Usually dinoflagellates are harmless, but sometimes they produce dangerous toxins. The trick is figuring out when.

Scientists think symbiotic bacteria that live on the surface of dinoflagellates probably help synthesize the toxins, but no one is sure how. Genetic tools often used to sort out such relationships don’t work for dinoflagellates, which have enormous genomes that are not well understood.

So chemistry professor Michael Burkhart’s group took a different approach. They set up a system to add a fluorescent tag to an enzyme that makes one kind of toxin, okadaic acid, but with a twist. By handing the tag to a the molecule that turns the enzyme on, they ensured that only those parts of cells that are capable of making the toxin would glow.

Specks glow brightly on the surface of dinoflagellates incubated with both the marker and symbiotic bacteria, and the toxin accumulates in the culture. Those lights go off, and toxin production ceases, if the chemists add antibiotics to the mix.

You can't tell by looking whether a mussel is safe to eat.
The new marker proved useful in live mussels as well. Their guts glowed with toxin-producing dinoflagellates even before the poison transferred to the mussel tissue itself.

This technique may could be the basis of an early warning system for aquaculturists and in theory it could lower the risk of shellfish poisoning.

Right now, the method requires a relatively expensive fluroscence microscope to view the tagged cells, but Burkhart’s team is optimistic that rapidly developing technology will soon make the tag easy to detect with a handheld device.

The National Institute of General Medical Science and the American Chemical Society funded this project.

Media contact:
Susan Brown: (858) 246-0161 or sdbrown@ucsd.edu

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>