Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walnuts slow prostate tumors in mice

23.03.2010
UC Davis research shows walnuts affect genes related to tumor growth

Walnut consumption slows the growth of prostate cancer in mice and has beneficial effects on multiple genes related to the control of tumor growth and metabolism, UC Davis and the U.S. Department of Agriculture Western Regional Research Center in Albany, Calif. have found.

The study, by Paul Davis, nutritionist in the Department of Nutrition and a researcher with the UC Davis Cancer Center, announced the findings today at the annual national meeting of the American Chemical Society in San Francisco.

Davis said the research findings provide additional evidence that walnuts, although high in fat, are healthful.

"This study shows that when mice with prostate tumors consume an amount of walnuts that could easily be eaten by a man, tumor growth is controlled," he said. "This leaves me very hopeful that it could be beneficial in patients."

Prostate cancer affects one in six American men. It is one in which environmental factors, especially diet, play an important role. Numerous clinical studies have demonstrated that eating walnuts -- rich in omega-3 polyunsaturated fats, antioxidants and other plant chemicals -- decreases the risk of cardiovascular disease. These findings prompted the U.S. Food & Drug Administration in 2004 to approve, for the first time, a qualified health claim for reducing heart disease risk for a whole food.

Davis fed a diet with whole walnuts to mice that had been genetically programmed to get prostate cancer. After 18 weeks, they found that consuming the human equivalent of 2.4 ounces of walnuts per day resulted in significantly smaller, slower-growing prostate tumors compared to mice consuming the same diet with an equal amount of fat, but not from walnuts. They also found that not only was prostate cancer growth reduced by 30 to 40 percent, but that the mice had lower blood levels of a particular protein, insulin-like growth factor (IGF-1), which has been strongly associated with prostate cancer. Additionally, Davis and his research colleagues looked at the effect of walnuts on gene activity in the prostate tumors using whole mouse gene chip technology, and found beneficial effects on multiple genes related to controlling tumor growth and metabolism.

"This is another exciting study from UC Davis nutrition researchers, where truly promising results that have a molecular footprint are having beneficial effects against cancer," said Ralph deVere White, UC Davis Cancer Center director and a prostate cancer researcher. "We have to find a way to get these kinds of studies on nutritional products funded so that we can truly evaluate their effects on cancer patients."

Davis, whose research was funded by a grant to UC Davis from the California Walnut Board, said additional research is needed to further explore how walnuts reduce tumor cell growth.

"The bottom line is that what is good for the heart -- walnuts -- may be good for the prostate as well," he said.

UC Davis Cancer Center is a National Cancer Institute-designated cancer center that cares for 9,000 adults and children with cancer each year from throughout the Central Valley and inland Northern California. Its Outreach Research and Education Program works to eliminate ethnic disparities in cancer region-wide.

Dorsey Griffith | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>