Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walnuts slow prostate tumors in mice

23.03.2010
UC Davis research shows walnuts affect genes related to tumor growth

Walnut consumption slows the growth of prostate cancer in mice and has beneficial effects on multiple genes related to the control of tumor growth and metabolism, UC Davis and the U.S. Department of Agriculture Western Regional Research Center in Albany, Calif. have found.

The study, by Paul Davis, nutritionist in the Department of Nutrition and a researcher with the UC Davis Cancer Center, announced the findings today at the annual national meeting of the American Chemical Society in San Francisco.

Davis said the research findings provide additional evidence that walnuts, although high in fat, are healthful.

"This study shows that when mice with prostate tumors consume an amount of walnuts that could easily be eaten by a man, tumor growth is controlled," he said. "This leaves me very hopeful that it could be beneficial in patients."

Prostate cancer affects one in six American men. It is one in which environmental factors, especially diet, play an important role. Numerous clinical studies have demonstrated that eating walnuts -- rich in omega-3 polyunsaturated fats, antioxidants and other plant chemicals -- decreases the risk of cardiovascular disease. These findings prompted the U.S. Food & Drug Administration in 2004 to approve, for the first time, a qualified health claim for reducing heart disease risk for a whole food.

Davis fed a diet with whole walnuts to mice that had been genetically programmed to get prostate cancer. After 18 weeks, they found that consuming the human equivalent of 2.4 ounces of walnuts per day resulted in significantly smaller, slower-growing prostate tumors compared to mice consuming the same diet with an equal amount of fat, but not from walnuts. They also found that not only was prostate cancer growth reduced by 30 to 40 percent, but that the mice had lower blood levels of a particular protein, insulin-like growth factor (IGF-1), which has been strongly associated with prostate cancer. Additionally, Davis and his research colleagues looked at the effect of walnuts on gene activity in the prostate tumors using whole mouse gene chip technology, and found beneficial effects on multiple genes related to controlling tumor growth and metabolism.

"This is another exciting study from UC Davis nutrition researchers, where truly promising results that have a molecular footprint are having beneficial effects against cancer," said Ralph deVere White, UC Davis Cancer Center director and a prostate cancer researcher. "We have to find a way to get these kinds of studies on nutritional products funded so that we can truly evaluate their effects on cancer patients."

Davis, whose research was funded by a grant to UC Davis from the California Walnut Board, said additional research is needed to further explore how walnuts reduce tumor cell growth.

"The bottom line is that what is good for the heart -- walnuts -- may be good for the prostate as well," he said.

UC Davis Cancer Center is a National Cancer Institute-designated cancer center that cares for 9,000 adults and children with cancer each year from throughout the Central Valley and inland Northern California. Its Outreach Research and Education Program works to eliminate ethnic disparities in cancer region-wide.

Dorsey Griffith | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>