Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wallflowers of the Earth system

04.06.2012
Algae, lichens, and mosses take up huge amounts of carbon dioxide and nitrogen from the atmosphere and thus also influences the climate

In cities, the presence of algae, lichens, and mosses is not considered desirable and they are often removed from roofs and walls. It is, however, totally unfair to consider these cryptogamic covers, as the flat growths are referred to in scientific terms, just a nuisance.


Lichen on a twig. The photo shows various lichen species that have colonised a twig. Lichens as the common orange lichen (Xanthoria parietina) are a symbiosis of a fungus and green or blue green algae (cyanobacteria). They belong to the cryptogamic covers that can fix carbon dioxide and nitrogen depending on the species. Picture: W. Elbert, MPI for Chemistry


Lichens, like the green-yellow map lichen depicted in this image, are pioneers of life: They grow on rocks, paving the way for other plants. Picture: Uli Pöschl, MPI for Chemistry

Scientists at the Max Planck Institute for Chemistry have discovered that these mostly inconspicuous looking growths take up huge amounts of atmospheric carbon dioxide and nitrogen and fix it at the earth’s surface. Cryptogamic covers are responsible for about half of the naturally occurring nitrogen fixation on land and they take up as much carbon dioxide as is released yearly from biomass burning. These new findings will help to improve global flux calculations and climate models, in which up to now the carbon and nitrogen balance of the cryptogamic covers have been neglected.

The roles that forests and oceans play in the climate and in the global exchange of oxygen, carbon, and nitrogen have been documented in numerous scientific studies. The importance of algae that grow on land, lichens, and mosses for the nitrogen and carbon fluxes and also for the carbon dioxide balance is normally not taken into consideration. This even though cryptogamic covers including the blue green algae (cyanobacteria) cover approximately 30% of soil surface that includes the surfaces of plants. Life forms that get their energy through photosynthesis, but don’t flower, belong to the cryptogams. They are found in all ecosystems, not just on roofs, trees, or walls. Cryptogamic covers, which consist of some of the oldest life forms on our Planet, are also found on cliffs and in soils in dry regions.
“Actually, we wanted to know which compounds the cryptogamic covers emit into the air“, said Wolfgang Elbert, who initiated the research at the Max Planck Institute of Chemistry. “We found that there are a lot of studies about the ecological role of these life forms, but their contribution to the global nitrogen and carbon balance has been neglected until now.“ To get at the importance of the cryptogamic covers, the chemists analysed the data from hundreds of studies in cooperation with biologists and geologists. Their finding: Algae, mosses, and lichens take up approximately 14 billion tons of carbon dioxide and fix approximately 50 million tons of nitrogen per year.

Kryptogamic covers are ecologically important especially as they fix nitrogen

The magnitude of these numbers surprised the Mainz´ researchers and their colleagues at the University of Kaiserslautern and the Biodiversity and Climate Research Centre in Frankfurt because the cryptogamic covers take up about as much carbon dioxide as is annually released by the burning of forests and other biomass.

Especially amazing is the amount of nitrogen that is fixed by the cryptogams and that is thereby made available in the soil and to other organisms. “This represents half of the naturally fixed nitrogen on land, which is of particular importance for ecosystems because nitrogen is often the limiting nutrient. Also, the uptake of CO2 by plants is often limited by the availability of nitrogen“, explained Ulrich Pöschl, leader of the research group.

The results support that crytpogamic covers are an important nitrogen source especially in nutrient-poor ecosystems and dry regions and that they promote the fertility and stability of ground surfaces. (SB/PH)

Original publication
Wolfgang Elbert, Bettina Weber, Susannah Burrows, Jörg Steinkamp, Burkhard Büdel, Meinrat O. Andreae and Ulrich Pöschl
Contribution of cryptogamic covers to the global cycles of carbon and nitrogen
Nature Geoscience, June 3rd 2012; DOI: 10.1038/NGEO1486

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>