Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wallflowers of the Earth system

04.06.2012
Algae, lichens, and mosses take up huge amounts of carbon dioxide and nitrogen from the atmosphere and thus also influences the climate

In cities, the presence of algae, lichens, and mosses is not considered desirable and they are often removed from roofs and walls. It is, however, totally unfair to consider these cryptogamic covers, as the flat growths are referred to in scientific terms, just a nuisance.


Lichen on a twig. The photo shows various lichen species that have colonised a twig. Lichens as the common orange lichen (Xanthoria parietina) are a symbiosis of a fungus and green or blue green algae (cyanobacteria). They belong to the cryptogamic covers that can fix carbon dioxide and nitrogen depending on the species. Picture: W. Elbert, MPI for Chemistry


Lichens, like the green-yellow map lichen depicted in this image, are pioneers of life: They grow on rocks, paving the way for other plants. Picture: Uli Pöschl, MPI for Chemistry

Scientists at the Max Planck Institute for Chemistry have discovered that these mostly inconspicuous looking growths take up huge amounts of atmospheric carbon dioxide and nitrogen and fix it at the earth’s surface. Cryptogamic covers are responsible for about half of the naturally occurring nitrogen fixation on land and they take up as much carbon dioxide as is released yearly from biomass burning. These new findings will help to improve global flux calculations and climate models, in which up to now the carbon and nitrogen balance of the cryptogamic covers have been neglected.

The roles that forests and oceans play in the climate and in the global exchange of oxygen, carbon, and nitrogen have been documented in numerous scientific studies. The importance of algae that grow on land, lichens, and mosses for the nitrogen and carbon fluxes and also for the carbon dioxide balance is normally not taken into consideration. This even though cryptogamic covers including the blue green algae (cyanobacteria) cover approximately 30% of soil surface that includes the surfaces of plants. Life forms that get their energy through photosynthesis, but don’t flower, belong to the cryptogams. They are found in all ecosystems, not just on roofs, trees, or walls. Cryptogamic covers, which consist of some of the oldest life forms on our Planet, are also found on cliffs and in soils in dry regions.
“Actually, we wanted to know which compounds the cryptogamic covers emit into the air“, said Wolfgang Elbert, who initiated the research at the Max Planck Institute of Chemistry. “We found that there are a lot of studies about the ecological role of these life forms, but their contribution to the global nitrogen and carbon balance has been neglected until now.“ To get at the importance of the cryptogamic covers, the chemists analysed the data from hundreds of studies in cooperation with biologists and geologists. Their finding: Algae, mosses, and lichens take up approximately 14 billion tons of carbon dioxide and fix approximately 50 million tons of nitrogen per year.

Kryptogamic covers are ecologically important especially as they fix nitrogen

The magnitude of these numbers surprised the Mainz´ researchers and their colleagues at the University of Kaiserslautern and the Biodiversity and Climate Research Centre in Frankfurt because the cryptogamic covers take up about as much carbon dioxide as is annually released by the burning of forests and other biomass.

Especially amazing is the amount of nitrogen that is fixed by the cryptogams and that is thereby made available in the soil and to other organisms. “This represents half of the naturally fixed nitrogen on land, which is of particular importance for ecosystems because nitrogen is often the limiting nutrient. Also, the uptake of CO2 by plants is often limited by the availability of nitrogen“, explained Ulrich Pöschl, leader of the research group.

The results support that crytpogamic covers are an important nitrogen source especially in nutrient-poor ecosystems and dry regions and that they promote the fertility and stability of ground surfaces. (SB/PH)

Original publication
Wolfgang Elbert, Bettina Weber, Susannah Burrows, Jörg Steinkamp, Burkhard Büdel, Meinrat O. Andreae and Ulrich Pöschl
Contribution of cryptogamic covers to the global cycles of carbon and nitrogen
Nature Geoscience, June 3rd 2012; DOI: 10.1038/NGEO1486

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>