Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wallflowers of the Earth system

04.06.2012
Algae, lichens, and mosses take up huge amounts of carbon dioxide and nitrogen from the atmosphere and thus also influences the climate

In cities, the presence of algae, lichens, and mosses is not considered desirable and they are often removed from roofs and walls. It is, however, totally unfair to consider these cryptogamic covers, as the flat growths are referred to in scientific terms, just a nuisance.


Lichen on a twig. The photo shows various lichen species that have colonised a twig. Lichens as the common orange lichen (Xanthoria parietina) are a symbiosis of a fungus and green or blue green algae (cyanobacteria). They belong to the cryptogamic covers that can fix carbon dioxide and nitrogen depending on the species. Picture: W. Elbert, MPI for Chemistry


Lichens, like the green-yellow map lichen depicted in this image, are pioneers of life: They grow on rocks, paving the way for other plants. Picture: Uli Pöschl, MPI for Chemistry

Scientists at the Max Planck Institute for Chemistry have discovered that these mostly inconspicuous looking growths take up huge amounts of atmospheric carbon dioxide and nitrogen and fix it at the earth’s surface. Cryptogamic covers are responsible for about half of the naturally occurring nitrogen fixation on land and they take up as much carbon dioxide as is released yearly from biomass burning. These new findings will help to improve global flux calculations and climate models, in which up to now the carbon and nitrogen balance of the cryptogamic covers have been neglected.

The roles that forests and oceans play in the climate and in the global exchange of oxygen, carbon, and nitrogen have been documented in numerous scientific studies. The importance of algae that grow on land, lichens, and mosses for the nitrogen and carbon fluxes and also for the carbon dioxide balance is normally not taken into consideration. This even though cryptogamic covers including the blue green algae (cyanobacteria) cover approximately 30% of soil surface that includes the surfaces of plants. Life forms that get their energy through photosynthesis, but don’t flower, belong to the cryptogams. They are found in all ecosystems, not just on roofs, trees, or walls. Cryptogamic covers, which consist of some of the oldest life forms on our Planet, are also found on cliffs and in soils in dry regions.
“Actually, we wanted to know which compounds the cryptogamic covers emit into the air“, said Wolfgang Elbert, who initiated the research at the Max Planck Institute of Chemistry. “We found that there are a lot of studies about the ecological role of these life forms, but their contribution to the global nitrogen and carbon balance has been neglected until now.“ To get at the importance of the cryptogamic covers, the chemists analysed the data from hundreds of studies in cooperation with biologists and geologists. Their finding: Algae, mosses, and lichens take up approximately 14 billion tons of carbon dioxide and fix approximately 50 million tons of nitrogen per year.

Kryptogamic covers are ecologically important especially as they fix nitrogen

The magnitude of these numbers surprised the Mainz´ researchers and their colleagues at the University of Kaiserslautern and the Biodiversity and Climate Research Centre in Frankfurt because the cryptogamic covers take up about as much carbon dioxide as is annually released by the burning of forests and other biomass.

Especially amazing is the amount of nitrogen that is fixed by the cryptogams and that is thereby made available in the soil and to other organisms. “This represents half of the naturally fixed nitrogen on land, which is of particular importance for ecosystems because nitrogen is often the limiting nutrient. Also, the uptake of CO2 by plants is often limited by the availability of nitrogen“, explained Ulrich Pöschl, leader of the research group.

The results support that crytpogamic covers are an important nitrogen source especially in nutrient-poor ecosystems and dry regions and that they promote the fertility and stability of ground surfaces. (SB/PH)

Original publication
Wolfgang Elbert, Bettina Weber, Susannah Burrows, Jörg Steinkamp, Burkhard Büdel, Meinrat O. Andreae and Ulrich Pöschl
Contribution of cryptogamic covers to the global cycles of carbon and nitrogen
Nature Geoscience, June 3rd 2012; DOI: 10.1038/NGEO1486

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>