Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking in circles

24.08.2009
Max-Planck-scientists show that people really walk in circles when lost

Scientists in the Multisensory Perception and Action Group at the Max Planck Institute for Biological Cybernetics in Tübingen, led by Jan Souman and Marc Ernst, have now presented the first empirical evidence that people really walk in circles when they do not have reliable cues to their walking direction.

Their study, published today in the journal Current Biology, examined the walking trajectories of people who walked for several hours in the Sahara desert (Tunisia) and in the Bienwald forest area (Germany). The scientists used the global positioning system (GPS) to record these trajectories.

The results showed that participants were only able to keep a straight path when the sun or moon was visible. However, as soon as the sun disappeared behind some clouds, people started to walk in circles without even noticing it.

Speaking about the study, Jan Souman said: "One explanation offered in the past for walking in circles is that most people have one leg longer or stronger than the other, which would produce a systematic bias in one direction. To test this explanation, we instructed people to walk straight while blindfolded, thus removing the effects of vision. Most of the participants in the study walked in circles, sometimes in extremely small ones (diameter less than 20 metres)."

However, it turned out that these circles were rarely in a systematic direction. Instead, the same person sometimes veered to the left, sometimes to the right. Walking in circles is therefore not caused by differences in leg length or strength, but more likely the result of increasing uncertainty about where straight ahead is. "Small random errors in the various sensory signals that provide information about walking direction add up over time, making what a person perceives to be straight ahead drift away from the true straight ahead direction," according to Souman.

Marc Ernst, Group Leader at the MPI for Biological Cybernetics, added: "The results from these experiments show that even though people may be convinced that they are walking in a straight line, their perception is not always reliable. Additional, more cognitive, strategies are necessary to really walk in a straight line. People need to use reliable cues for walking direction in their environment, for example a tower or mountain in the distance, or the position of the sun." In future research, Souman and Ernst will focus on how people use these and various other sources of information to guide their walking direction.

For this, the scientists will use state-of-the-art Virtual Reality equipment, including a revolutionary new omnidirectional treadmill (("Cyber-carpet", www.youtube.com/watch?v=bmWD1bIKc44). Participants will try to find their way through a virtual forest, while walking in place on the treadmill and never leaving the laboratory. This will allow the scientists to have much more control over the information available to participants, making it possible to better test specific explanations, for example how people use the position of the sun to orient themselves.

Dr. Susanne Diederich | EurekAlert!
Further information:
http://www.tuebingen.mpg.de

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>