Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking in circles

24.08.2009
Max-Planck-scientists show that people really walk in circles when lost

Scientists in the Multisensory Perception and Action Group at the Max Planck Institute for Biological Cybernetics in Tübingen, led by Jan Souman and Marc Ernst, have now presented the first empirical evidence that people really walk in circles when they do not have reliable cues to their walking direction.

Their study, published today in the journal Current Biology, examined the walking trajectories of people who walked for several hours in the Sahara desert (Tunisia) and in the Bienwald forest area (Germany). The scientists used the global positioning system (GPS) to record these trajectories.

The results showed that participants were only able to keep a straight path when the sun or moon was visible. However, as soon as the sun disappeared behind some clouds, people started to walk in circles without even noticing it.

Speaking about the study, Jan Souman said: "One explanation offered in the past for walking in circles is that most people have one leg longer or stronger than the other, which would produce a systematic bias in one direction. To test this explanation, we instructed people to walk straight while blindfolded, thus removing the effects of vision. Most of the participants in the study walked in circles, sometimes in extremely small ones (diameter less than 20 metres)."

However, it turned out that these circles were rarely in a systematic direction. Instead, the same person sometimes veered to the left, sometimes to the right. Walking in circles is therefore not caused by differences in leg length or strength, but more likely the result of increasing uncertainty about where straight ahead is. "Small random errors in the various sensory signals that provide information about walking direction add up over time, making what a person perceives to be straight ahead drift away from the true straight ahead direction," according to Souman.

Marc Ernst, Group Leader at the MPI for Biological Cybernetics, added: "The results from these experiments show that even though people may be convinced that they are walking in a straight line, their perception is not always reliable. Additional, more cognitive, strategies are necessary to really walk in a straight line. People need to use reliable cues for walking direction in their environment, for example a tower or mountain in the distance, or the position of the sun." In future research, Souman and Ernst will focus on how people use these and various other sources of information to guide their walking direction.

For this, the scientists will use state-of-the-art Virtual Reality equipment, including a revolutionary new omnidirectional treadmill (("Cyber-carpet", www.youtube.com/watch?v=bmWD1bIKc44). Participants will try to find their way through a virtual forest, while walking in place on the treadmill and never leaving the laboratory. This will allow the scientists to have much more control over the information available to participants, making it possible to better test specific explanations, for example how people use the position of the sun to orient themselves.

Dr. Susanne Diederich | EurekAlert!
Further information:
http://www.tuebingen.mpg.de

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>