Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking in circles

24.08.2009
Max-Planck-scientists show that people really walk in circles when lost

Scientists in the Multisensory Perception and Action Group at the Max Planck Institute for Biological Cybernetics in Tübingen, led by Jan Souman and Marc Ernst, have now presented the first empirical evidence that people really walk in circles when they do not have reliable cues to their walking direction.

Their study, published today in the journal Current Biology, examined the walking trajectories of people who walked for several hours in the Sahara desert (Tunisia) and in the Bienwald forest area (Germany). The scientists used the global positioning system (GPS) to record these trajectories.

The results showed that participants were only able to keep a straight path when the sun or moon was visible. However, as soon as the sun disappeared behind some clouds, people started to walk in circles without even noticing it.

Speaking about the study, Jan Souman said: "One explanation offered in the past for walking in circles is that most people have one leg longer or stronger than the other, which would produce a systematic bias in one direction. To test this explanation, we instructed people to walk straight while blindfolded, thus removing the effects of vision. Most of the participants in the study walked in circles, sometimes in extremely small ones (diameter less than 20 metres)."

However, it turned out that these circles were rarely in a systematic direction. Instead, the same person sometimes veered to the left, sometimes to the right. Walking in circles is therefore not caused by differences in leg length or strength, but more likely the result of increasing uncertainty about where straight ahead is. "Small random errors in the various sensory signals that provide information about walking direction add up over time, making what a person perceives to be straight ahead drift away from the true straight ahead direction," according to Souman.

Marc Ernst, Group Leader at the MPI for Biological Cybernetics, added: "The results from these experiments show that even though people may be convinced that they are walking in a straight line, their perception is not always reliable. Additional, more cognitive, strategies are necessary to really walk in a straight line. People need to use reliable cues for walking direction in their environment, for example a tower or mountain in the distance, or the position of the sun." In future research, Souman and Ernst will focus on how people use these and various other sources of information to guide their walking direction.

For this, the scientists will use state-of-the-art Virtual Reality equipment, including a revolutionary new omnidirectional treadmill (("Cyber-carpet", www.youtube.com/watch?v=bmWD1bIKc44). Participants will try to find their way through a virtual forest, while walking in place on the treadmill and never leaving the laboratory. This will allow the scientists to have much more control over the information available to participants, making it possible to better test specific explanations, for example how people use the position of the sun to orient themselves.

Dr. Susanne Diederich | EurekAlert!
Further information:
http://www.tuebingen.mpg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>