Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for a Sign? Researchers Find Potential Brain 'Switch' for New Behavior

23.05.2013
You're standing near an airport luggage carousel and your bag emerges on the conveyor belt, prompting you to spring into action. How does your brain make the shift from passively waiting to taking action when your bag appears?

A new study from investigators at the University of Michigan and Eli Lilly may reveal the brain's "switch" for new behavior. They measured levels of a neurotransmitter called acetylcholine, which is involved in attention and memory, while rats monitored a screen for a signal. At the end of each trial, the rat had to indicate if a signal had occurred.

Researchers noticed that if a signal occurred after a long period of monitoring or "non-signal" processing, there was a spike in acetylcholine in the rat's right prefrontal cortex. No such spike occurred for another signal occurring shortly afterwards.

"In other words, the increase in acetylcholine seemed to activate or 'switch on' the response to the signal, and to be unnecessary if that response was already activated," said Cindy Lustig, one of the study's senior authors and an associate professor in the U-M Department of Psychology.

The researchers repeated the study in humans using functional magnetic resonance imaging (fMRI), which measures brain activity, and also found a short increase in right prefrontal cortex activity for the first signal in a series.

To connect the findings between rats and humans, they measured changes in oxygen levels, similar to the changes that produce the fMRI signal, in the brains of rats performing the task.

They again found a response in the right prefrontal cortex that only occurred for the first signal in a series. A follow-up experiment showed that direct stimulation of brain tissue using drugs that target acetylcholine receptors could likewise produce these changes in brain oxygen.

Together, the studies' results provide some of the most direct evidence, so far, linking a specific neurotransmitter response to changes in brain activity in humans. The findings could guide the development of better treatments for disorders in which people have difficulty switching out of current behaviors and activating new ones. Repetitive behaviors associated with obsessive-compulsive disorder and autism are the most obvious examples, and related mechanisms may underlie problems with preservative behavior in schizophrenia, dementia and aging.

The study's other authors included William Howe, Martin Sarter, Anne Berry and Joshua Carp from U-M and Jennifer Francois, Gary Gilmour and Mark Tricklebank from Eli Lilly.

The findings appear in the current issue of Journal of Neuroscience.

Jared Wadley | Newswise
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>