Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waiting for a Sign? Researchers Find Potential Brain 'Switch' for New Behavior

23.05.2013
You're standing near an airport luggage carousel and your bag emerges on the conveyor belt, prompting you to spring into action. How does your brain make the shift from passively waiting to taking action when your bag appears?

A new study from investigators at the University of Michigan and Eli Lilly may reveal the brain's "switch" for new behavior. They measured levels of a neurotransmitter called acetylcholine, which is involved in attention and memory, while rats monitored a screen for a signal. At the end of each trial, the rat had to indicate if a signal had occurred.

Researchers noticed that if a signal occurred after a long period of monitoring or "non-signal" processing, there was a spike in acetylcholine in the rat's right prefrontal cortex. No such spike occurred for another signal occurring shortly afterwards.

"In other words, the increase in acetylcholine seemed to activate or 'switch on' the response to the signal, and to be unnecessary if that response was already activated," said Cindy Lustig, one of the study's senior authors and an associate professor in the U-M Department of Psychology.

The researchers repeated the study in humans using functional magnetic resonance imaging (fMRI), which measures brain activity, and also found a short increase in right prefrontal cortex activity for the first signal in a series.

To connect the findings between rats and humans, they measured changes in oxygen levels, similar to the changes that produce the fMRI signal, in the brains of rats performing the task.

They again found a response in the right prefrontal cortex that only occurred for the first signal in a series. A follow-up experiment showed that direct stimulation of brain tissue using drugs that target acetylcholine receptors could likewise produce these changes in brain oxygen.

Together, the studies' results provide some of the most direct evidence, so far, linking a specific neurotransmitter response to changes in brain activity in humans. The findings could guide the development of better treatments for disorders in which people have difficulty switching out of current behaviors and activating new ones. Repetitive behaviors associated with obsessive-compulsive disorder and autism are the most obvious examples, and related mechanisms may underlie problems with preservative behavior in schizophrenia, dementia and aging.

The study's other authors included William Howe, Martin Sarter, Anne Berry and Joshua Carp from U-M and Jennifer Francois, Gary Gilmour and Mark Tricklebank from Eli Lilly.

The findings appear in the current issue of Journal of Neuroscience.

Jared Wadley | Newswise
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>