Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Volvox Got Its Groove

20.02.2009
Some algae have been hanging together rather than going it alone much longer than previously thought, according to new research.

Ancestors of Volvox algae made the transition from being a single-celled organism to becoming a multicellular colony at least 200 million years ago, during the Triassic Period.

At that time, Earth was a hot-house world whose inhabitants included tree ferns, dinosaurs and early mammals. Previous estimates had suggested Volvox's ancestors arose only 50 million years.

The algae switched to a communal lifestyle in only 35 million years -- "a geological eyeblink," said lead researcher Matthew D. Herron of The University of Arizona in Tucson.

Figuring out how algae made the leap can provide clues to how multicellular organisms such as plants and animals evolved from single cells.

Cooperating successfully is the key, Herron said.

"All the macroscopic organisms we see around us trace back to unicellular ancestors," said Herron, a doctoral candidate in the UA's department of ecology and evolutionary biology. "Each of those groups had to go through a transition like this one.

"We think the early changes in this process were related to cooperation among cells and conflicts among cells -- and finally to the resolution of those conflicts," he said.

The researchers used DNA sequences from about 45 different species of Volvox and related species to reconstruct the group's family tree and determine how long ago the first colonial ancestor arose.

The team's article "Triassic origin and early radiation of multicellular volvocine algae," is in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

Herron's co-authors Jeremiah D. Hackett and Richard E. Michod are members of the UA's department of ecology and evolutionary biology. Co-author Frank O.

Aylward was at the UA when the research was conducted and is now at the University of Wisconsin in Madison. The Society of Systematic Biologists and Sigma Xi helped fund the research.

Volvox and its relatives live in freshwater ponds all over the world. Some of the species are unicellular, while others live in colonies of up to 50,000 cells.

Many of the colonial algae species are visible to the eye and appear to be little green spheres rolling through the water. The most complex species have a division of labor -- some cells do the swimming, others do the reproducing.

Although an earlier estimate suggested the algae's ancestors banded together 50 million years ago, Herron wanted to check the estimate using 21st-century genetic and molecular techniques.

In addition to constructing the Volvox family tree, the team determined how long ago the group's oldest common ancestor lived by comparing the amount of genetic differences between species.

One of the earliest traits to evolve is the clear jelly-like substance visible between the cells of the spherical Volvox colonies, Herron said. "We think that stuff is what held the earliest multicellular colonies together."

Banding together in a larger mass can provide protection from predators, he said. "Some things can't eat you if you're bigger."

But producing the goo, called extracellular matrix, takes resources and is one of the costs of cooperation.

"So now there's a temptation to cheat," Herron said. "Let's say I'm in a four-cell colony. I'm going to let the other three guys make the extracellular matrix, and I'm going to focus on growing and reproducing.

That's the conflict."

Overcoming that conflict is essential to becoming a multicellular organism, he said. The benefits of cheating have to be reduced for the cells to cooperate successfully.

Some traits the team studied are genetic traits that mediate conflict.

Genetic control of cell number is one of those, he said. "If my number of offspring is fixed at four, now there's no reason for me to cheat. I can't have eight offspring when everyone else is having only four."

Herron is now studying whether the size of the colony affects the degree to which there are different types of cells within the colony.

Researcher contact:
Matthew Herron
520-621-1844
mherron@email.arizona.edu
Related Web sites:
Matthew Herron
http://www.eebweb.arizona.edu/Grads/mherron/
UA Department of Ecology and Evolutionary Biology
http://eebweb.arizona.edu/

Mari N. Jensen | The University of Arizona
Further information:
http://www.arizona.edu
http://eebweb.arizona.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>