Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Volvox Got Its Groove

20.02.2009
Some algae have been hanging together rather than going it alone much longer than previously thought, according to new research.

Ancestors of Volvox algae made the transition from being a single-celled organism to becoming a multicellular colony at least 200 million years ago, during the Triassic Period.

At that time, Earth was a hot-house world whose inhabitants included tree ferns, dinosaurs and early mammals. Previous estimates had suggested Volvox's ancestors arose only 50 million years.

The algae switched to a communal lifestyle in only 35 million years -- "a geological eyeblink," said lead researcher Matthew D. Herron of The University of Arizona in Tucson.

Figuring out how algae made the leap can provide clues to how multicellular organisms such as plants and animals evolved from single cells.

Cooperating successfully is the key, Herron said.

"All the macroscopic organisms we see around us trace back to unicellular ancestors," said Herron, a doctoral candidate in the UA's department of ecology and evolutionary biology. "Each of those groups had to go through a transition like this one.

"We think the early changes in this process were related to cooperation among cells and conflicts among cells -- and finally to the resolution of those conflicts," he said.

The researchers used DNA sequences from about 45 different species of Volvox and related species to reconstruct the group's family tree and determine how long ago the first colonial ancestor arose.

The team's article "Triassic origin and early radiation of multicellular volvocine algae," is in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

Herron's co-authors Jeremiah D. Hackett and Richard E. Michod are members of the UA's department of ecology and evolutionary biology. Co-author Frank O.

Aylward was at the UA when the research was conducted and is now at the University of Wisconsin in Madison. The Society of Systematic Biologists and Sigma Xi helped fund the research.

Volvox and its relatives live in freshwater ponds all over the world. Some of the species are unicellular, while others live in colonies of up to 50,000 cells.

Many of the colonial algae species are visible to the eye and appear to be little green spheres rolling through the water. The most complex species have a division of labor -- some cells do the swimming, others do the reproducing.

Although an earlier estimate suggested the algae's ancestors banded together 50 million years ago, Herron wanted to check the estimate using 21st-century genetic and molecular techniques.

In addition to constructing the Volvox family tree, the team determined how long ago the group's oldest common ancestor lived by comparing the amount of genetic differences between species.

One of the earliest traits to evolve is the clear jelly-like substance visible between the cells of the spherical Volvox colonies, Herron said. "We think that stuff is what held the earliest multicellular colonies together."

Banding together in a larger mass can provide protection from predators, he said. "Some things can't eat you if you're bigger."

But producing the goo, called extracellular matrix, takes resources and is one of the costs of cooperation.

"So now there's a temptation to cheat," Herron said. "Let's say I'm in a four-cell colony. I'm going to let the other three guys make the extracellular matrix, and I'm going to focus on growing and reproducing.

That's the conflict."

Overcoming that conflict is essential to becoming a multicellular organism, he said. The benefits of cheating have to be reduced for the cells to cooperate successfully.

Some traits the team studied are genetic traits that mediate conflict.

Genetic control of cell number is one of those, he said. "If my number of offspring is fixed at four, now there's no reason for me to cheat. I can't have eight offspring when everyone else is having only four."

Herron is now studying whether the size of the colony affects the degree to which there are different types of cells within the colony.

Researcher contact:
Matthew Herron
520-621-1844
mherron@email.arizona.edu
Related Web sites:
Matthew Herron
http://www.eebweb.arizona.edu/Grads/mherron/
UA Department of Ecology and Evolutionary Biology
http://eebweb.arizona.edu/

Mari N. Jensen | The University of Arizona
Further information:
http://www.arizona.edu
http://eebweb.arizona.edu/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>