Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voicemail discovered in nature

13.06.2012
Insects receive soil messages from the past

Insects can use plants as ‘green phones’ for communication with other bugs. A new study now shows that through those same plants insects are also able to leave ‘voicemail’ messages in the soil. Herbivorous insects store their voicemails via their effects on soil fungi.

Researchers from the Netherlands Institute of Ecology (NIOO-KNAW) and Wageningen University (WUR) discovered this unique messaging service in the ragwort plant. The influential journal Ecology Letters will soon publish these results.

A few years ago, NIOO scientists discovered that soil-dwelling and aboveground insects are able to communicate with each other using the plant as a telephone. Insects eating plant roots change the chemical composition of the leaves, causing the plant to release volatile signals into the air. This can convince aboveground insects to select another food plant in order to avoid competition and to escape from poisonous defence compounds in the plant. But the impact doesn’t stop there.

The new research shows that insects leave a specific legacy that remains in the soil after they have fed on a plant. And future plants growing on that same spot can pick up these signals from the soil and pass them on to other insects. Those messages are really specific: the new plant can tell whether the former one was suffering from leaf-eating caterpillars or from root-eating insects.
“The new plants are actually decoding a ‘voicemail’ message from the past to the next generation of plant-feeding insects, and their enemies,” recaps NIOO researcher and first author Olga Kostenko. “The insects are re-living the past.” This message from the past strongly influences the growth and possibly also the behaviour of these bugs. Today’s insect community is influenced by the messages from past seasons.

Kostenko and her colleagues grew ragwort plants in a greenhouse and exposed them to leaf-eating caterpillars or root-feeding beetle larvae. Then they grew new plants in the same soil and exposed them to insects again. “What we discovered is that the composition of fungi in the soil changed greatly and depended on whether the insect had been feeding on roots or leaves,” explains Kostenko. “These changes in fungal community, in turn, affected the growth and chemistry of the next batch of plants and therefore the insects on those plants.”
Growth and palatability of new plants in the same soil thus mirrored the condition of the previous plant. In this way, a new plant can pass down the soil legacy or message from the past to caterpillars and their enemies.

“How long are these voicemail messages kept in the soil? That’s what I also would like to know!” adds Kostenko. “We’re working on this, and on the question of how widespread this phenomenon is in nature.”

The research project was financed by a personal innovation grant of the Netherlands Organisation for Scientific Research (NWO) to Martijn Bezemer from the NIOO.
The NIOO is one of the largest research institutes of the Royal Netherlands Academy of Arts and Sciences (KNAW), with more than 200 employees and students. It is specialised in fundamental and strategic ecological research. Since early 2011 the NIOO is based in a sustainably built research laboratory in Wageningen, the Netherlands.

More information:
• researcher Olga Kostenko M.Sc., NIOO-KNAW Department of Terrestrial Ecology, T +31-317-473627 or +31-6-29306980 (mobile), o.kostenko@nioo.knaw.nl
• researcher Martijn Bezemer Ph.D., NIOO-KNAW Department of Terrestrial Ecology, T +31-317-473607 or +31-6-19177330 (mobile), m.bezemer@nioo.knaw.nl
• public information officer Froukje Rienks M.Sc., NIOO-KNAW, T +31-6-10487481 (mobile) or +31-317-473590, f.rienks@nioo.knaw.nl

Pictures are available below (source: Olga Kostenko / NIOO-KNAW)

Article: Legacy effects of aboveground-belowground interactions. Olga Kostenko, Tess F.J. van de Voorde, Patrick P.J. Mulder, Wim H. van der Putten & T. Martijn Bezemer. Ecology Letters, summer 2012 (already freely accessible via internet - the ‘early view’ for subscribers is temporarily made available by the editors).

Froukje Rienks | EurekAlert!
Further information:
http://www.knaw.nl

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>