Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voicemail discovered in nature

13.06.2012
Insects receive soil messages from the past

Insects can use plants as ‘green phones’ for communication with other bugs. A new study now shows that through those same plants insects are also able to leave ‘voicemail’ messages in the soil. Herbivorous insects store their voicemails via their effects on soil fungi.

Researchers from the Netherlands Institute of Ecology (NIOO-KNAW) and Wageningen University (WUR) discovered this unique messaging service in the ragwort plant. The influential journal Ecology Letters will soon publish these results.

A few years ago, NIOO scientists discovered that soil-dwelling and aboveground insects are able to communicate with each other using the plant as a telephone. Insects eating plant roots change the chemical composition of the leaves, causing the plant to release volatile signals into the air. This can convince aboveground insects to select another food plant in order to avoid competition and to escape from poisonous defence compounds in the plant. But the impact doesn’t stop there.

The new research shows that insects leave a specific legacy that remains in the soil after they have fed on a plant. And future plants growing on that same spot can pick up these signals from the soil and pass them on to other insects. Those messages are really specific: the new plant can tell whether the former one was suffering from leaf-eating caterpillars or from root-eating insects.
“The new plants are actually decoding a ‘voicemail’ message from the past to the next generation of plant-feeding insects, and their enemies,” recaps NIOO researcher and first author Olga Kostenko. “The insects are re-living the past.” This message from the past strongly influences the growth and possibly also the behaviour of these bugs. Today’s insect community is influenced by the messages from past seasons.

Kostenko and her colleagues grew ragwort plants in a greenhouse and exposed them to leaf-eating caterpillars or root-feeding beetle larvae. Then they grew new plants in the same soil and exposed them to insects again. “What we discovered is that the composition of fungi in the soil changed greatly and depended on whether the insect had been feeding on roots or leaves,” explains Kostenko. “These changes in fungal community, in turn, affected the growth and chemistry of the next batch of plants and therefore the insects on those plants.”
Growth and palatability of new plants in the same soil thus mirrored the condition of the previous plant. In this way, a new plant can pass down the soil legacy or message from the past to caterpillars and their enemies.

“How long are these voicemail messages kept in the soil? That’s what I also would like to know!” adds Kostenko. “We’re working on this, and on the question of how widespread this phenomenon is in nature.”

The research project was financed by a personal innovation grant of the Netherlands Organisation for Scientific Research (NWO) to Martijn Bezemer from the NIOO.
The NIOO is one of the largest research institutes of the Royal Netherlands Academy of Arts and Sciences (KNAW), with more than 200 employees and students. It is specialised in fundamental and strategic ecological research. Since early 2011 the NIOO is based in a sustainably built research laboratory in Wageningen, the Netherlands.

More information:
• researcher Olga Kostenko M.Sc., NIOO-KNAW Department of Terrestrial Ecology, T +31-317-473627 or +31-6-29306980 (mobile), o.kostenko@nioo.knaw.nl
• researcher Martijn Bezemer Ph.D., NIOO-KNAW Department of Terrestrial Ecology, T +31-317-473607 or +31-6-19177330 (mobile), m.bezemer@nioo.knaw.nl
• public information officer Froukje Rienks M.Sc., NIOO-KNAW, T +31-6-10487481 (mobile) or +31-317-473590, f.rienks@nioo.knaw.nl

Pictures are available below (source: Olga Kostenko / NIOO-KNAW)

Article: Legacy effects of aboveground-belowground interactions. Olga Kostenko, Tess F.J. van de Voorde, Patrick P.J. Mulder, Wim H. van der Putten & T. Martijn Bezemer. Ecology Letters, summer 2012 (already freely accessible via internet - the ‘early view’ for subscribers is temporarily made available by the editors).

Froukje Rienks | EurekAlert!
Further information:
http://www.knaw.nl

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>