Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamins doing gymnastics: Scientists capture first full image of vitamin B12 in action

27.03.2012
Work by University of Michigan and MIT team yields new understanding of crucial reaction in the body and in CO2-scrubbing bacteria

You see it listed on the side of your cereal box and your multivitamin bottle. It's vitamin B12, part of a nutritious diet like all those other vitamins and minerals.

But when it gets inside your body, new research suggests, B12 turns into a gymnast.

In a paper published recently in the journal Nature, scientists from the University of Michigan Health System and the Massachusetts Institute of Technology report they have created the first full 3-D images of B12 and its partner molecules twisting and contorting as part of a crucial reaction called methyltransfer.

That reaction is vital both in the cells of the human body and, in a slightly different way, in the cells of bacteria that consume carbon dioxide and carbon monoxide. That includes bacteria that live in the guts of humans, cows and other animals, and help with digestion. The new research was done using B12 complexes from another type of carbon dioxide-munching bacteria found in the murky bottoms of ponds.

The 3-D images produced by the team show for the first time the intricate molecular juggling needed for B12 to serve its biologically essential function. They reveal a multi-stage process involving what the researchers call an elaborate protein framework – a surprisingly complicated mechanism for such a critical reaction.

U-M Medical School professor and co-author Stephen Ragsdale, Ph.D., notes that this transfer reaction is important to understand because of its importance to human health. It also has potential implications for the development of new fuels that might become alternative renewable energy sources.

"Without this transfer of single carbon units involving B12, and its partner B9 (otherwise known as folic acid), heart disease and birth defects might be far more common," explains Ragsdale, a professor of biological chemistry. "Similarly, the bacteria that rely on this reaction would be unable to consume carbon dioxide or carbon monoxide to stay alive – and to remove gas from our guts or our atmosphere. So it's important on many levels."

In such bacteria, called anaerobes, the reaction is part of a larger process called the Wood-Ljungdahl pathway. It's what enables the organisms to live off of carbon monoxide, a gas that is toxic to other living things, and carbon dioxide, which is a greenhouse gas directly linked to climate change. Ragsdale notes that industry is currently looking at harnessing the Wood-Ljungdahl pathway to help generate liquid fuels and chemicals.

In addition to his Medical School post, Ragsdale is a member of the faculty of the U-M Energy Institute.

In the images created by the team, the scientists show how the complex of molecules contorts into multiple conformations -- first to activate, then to protect, and then to perform catalysis on the B12 molecule. They had isolated the complex from Moorella thermoacetica bacteria, which are used as models for studying this type of reaction.

The images were produced by aiming intense beams of X-rays at crystallized forms of the protein complex and painstakingly determining the position of every atom inside.

"This paper provides an understanding of the remarkable conformational movements that occur during one of the key steps in this microbial process, the step that involves the generation of the first in a series of organometallic intermediates that lead to the production of the key metabolic intermediate, acetyl-CoA," the authors note.

Senior author Catherine L. Drennan from MIT and the Howard Hughes Medical Institute, who received her Ph.D. at the U-M Medical School, adds, "We expected that this methyl-handoff between B vitamins must involve some type of conformational change, but the dramatic rearrangements that we have observed surprised even us."

In addition to Ragsdale and Drennan, the research team included the first author, Yan Kung, from MIT, and co-authors include U-M's Gunes Bender, MIT's Nozomi Ando, former MIT researchers Tzanko Doukov and Leah C. Blasiak, and the University of Nebraska's Javier Seravalli.

The research was funded by the National Institutes of Health and the MIT Energy Initiative. Two U.S. Department of Energy-funded synchrotron facilities were used to produce the crystallographic images: the Advanced Photon Source and its Northeastern Collaborative Access Team beamlines supported by NIH, and the Advanced Light Source. The atomic coordinates for the structures published by the team are deposited in the Protein Data Bank under accession codes 4DJD, 4DJE and 4DJF.

Citation: Nature doi:10.1038/nature10916

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>