Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamin C helps control gene activity in stem cells

02.07.2013
UCSF-led research finding relevant to cancer, in vitro fertilization
Vitamin C affects whether genes are switched on or off inside mouse stem cells, and may thereby play a previously unknown and fundamental role in helping to guide normal development in mice, humans and other animals, a scientific team led by UC San Francisco researchers has discovered.

The researchers found that vitamin C assists enzymes that play a crucial role in releasing the brakes that keep certain genes from becoming activated in the embryo soon after fertilization, when egg and sperm fuse.

The discovery might eventually lead to the use of vitamin C to improve results of in vitro fertilization, in which early embryos now are typically grown without the vitamin, and also to treat cancer, in which tumor cells abnormally engage or release these brakes on gene activation, the researchers concluded in a study published June 30, 2013 in the journal Nature.

In the near term, stem-cell scientists may begin incorporating vitamin C more systematically into their procedures for growing the most healthy and useful stem cells, according to UCSF stem-cell scientist Miguel Ramalho-Santos, PhD, who led the study. In fact, the unanticipated discovery emerged from an effort to compare different formulations of the growth medium, a kind of nutrient broth used to grow mouse embryonic stem cells in the lab.

Rather than building on any previous body of scientific work, the identification of the link between vitamin C and the activation of genes that should be turned on in early development was serendipitous, Ramalho-Santos said. “We bumped into this result,” he said.

Working in Ramalho-Santos’ lab, graduate student Kathryn Blaschke and postdoctoral fellow Kevin Ebata, PhD, were comparing different commercial growth media for mouse stem cells. The researchers began exploring how certain ingredients altered gene activity within the stem cells. Eventually they discovered that adding vitamin C led to increased activity of key enzymes that release the brakes that can prevent activation of an array of genes.

The brakes on gene activation that vitamin C helps release are molecules called methyl groups. These methyl groups are added to DNA at specific points along the genome to prevent specific genes from getting turned on.

During the development of multicellular organisms, humans among them, different patterns of methylation arise in different cells as methyl groups are biochemically attached to DNA at specific points along the genome during successive cell divisions. Normally this gradual methylation, a key part of the developmental program, is not reversible.

But after fertilization and during early development, a class of enzymes called “Tet” acts on a wide array of the methyl groups on the DNA to remove these brakes, so that genes can be activated as needed.

The UCSF researchers demonstrated that Tet enzymes require vitamin C for optimal activity as they act to remove the methyl groups from the DNA and to stimulate gene activity that more faithfully mimics in cultured stem cells what occurs at early stages of development in the mouse embryo.
“Potential roles for vitamin C in the clinic — including in embryo culture media used during in vitro fertilization, which currently do not contain vitamin C, and in cancers driven by aberrant DNA methylation — deserve exploration,” Ramalho-Santos, said.

In addition, scientists previously have found that many adult tissues also have stem cells, which can generate a variety of cell types found within a specific tissue. This raises the possibility that vitamin C might help maintain healthy stem cell populations in the adult, according to Ramalho-Santos.

“Although we did not in this paper address the function of Vitamin C in adult tissues, given the roles that Tet enzymes are now known to play in adult tissues, we anticipate that Vitamin C might also regulate Tet function in the adult,” Ramalho-Santos said. “This remains to be determined.”

Vitamin C already has become a popular supplement in recent decades, and potential health benefits of vitamin C supplementation continue to be investigated in clinical trials. It has been more than 80 years since vitamin C was first recognized as vital to prevent scurvy, a now rare connective-tissue disease caused by the failure of another enzyme that also relies on vitamin C.
The function of vitamin C as an antioxidant to prevent chemical damage is the likely reason why some commercial suppliers of growth media have included it in their products, Ramalho-Santos said, but other antioxidant molecules cannot replace Vitamin C in the enhancement of the activity of Tet enzymes.

Despite its importance, humans, unlike most animals and plants, cannot synthesize their own Vitamin C and must obtain it through their diet. The mouse makes vitamin C, but that fact does not diminish the expectation that the new findings will also apply to human development, according to Ramalho-Santos. Only adult liver cells in the mouse make vitamin C, he said.
Ramalho-Santos now aims to explore the newly discovered phenomenon in the living mouse. “The next step is to study vitamin C and gene expression in vivo,” he said.

The UCSF group led a team effort that included researchers from the University of British Columbia, Vancouver, and the La Jolla Institute for Allergy and Immunology, California. The study was funded by the National Institutes of Health, the California Institute of Regenerative Medicine and the Canadian Institutes of Health Research.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>