Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing virus replication in 3 dimensions

11.05.2009
Scientists at Heidelberg University Hospital present the first three-dimensional model of dengue virus replication / Article in Cell Host & Microbes

Dengue fever is the most common infectious disease transmitted by mosquitoes – some 100 million people around the world are infected. Researchers at the Hygiene Institute at Heidelberg University Hospital were the first to present a three-dimensional model of the location in the human cell where the virus is reproduced.

Their research provides an insight into the exact process of viral replication and serves as a model for other viruses whose replication is still unclear, such as the hepatitis C virus. In addition, it offers new approaches for developing measures to prevent or treat dengue fever. Up to now, neither a vaccine nor a specific antiviral therapy exists.

Professor Dr. Ralf Bartenschlager, director of the Department of Molecular Virology at the Heidelberg Hygiene Institute and his team, working in cooperation with colleagues from the European Molecular Biology Laboratory (EMBL) have published their study in the latest issue of the prestigious journal Cell Host & Microbes.

Viruses do not have a metabolism and cannot produce proteins from their genetic material (RNA or DNA) on their own. They can replicate only inside a host cell – but where and how exactly does this take place? The answer to this question is crucial for developing therapy.

Viruses transform human cell membranes for their purposes

Dengue viruses reproduce in what is known as the endoplasmic reticulum, a membrane network interconnected with the nuclear envelope; this is where proteins are synthesized. The dengue virus uses this membrane network and transforms it for its own use.

"We now know that viral RNA is replicated in vesicles in the endoplasmic reticulum and is secreted through tiny pores. We were also able to show that replication of the virus genome and its encapsulation in new virus particles are directly linked,” said Professor Bartenschlager. The new virus genomes are secreted through pores into the intracellular space where they are incorporated into pre-stages of viruses and then penetrate the endoplasmic reticulum a second time. There they are enveloped in a membrane that disguises them for the cell so that they can be secreted like normal cellular material. The reproduction cycle can begin again.

References:

Sonja Welsch, Sven Miller, Ines Romero-Brey, Andreas Merz, Christopher
Bleck, Paul Walther, Stephen D. Fuller, Claude Antony, Jacomine Krijnse-Locker, Ralf Bartenschlager, Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites, Cell Host & Microbes 2009, 5, 4.

Contact person:

Prof. Dr. Ralf Bartenschlager
Department of Molecular Virology
Heidelberg University School of Medicine
Im Neuenheimer Feld 345
69120 Heidelberg
Tel.: 06221 56-4569
E-mail: Ralf_Bartenschlager@med.uni-heidelberg.de
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 7,000 employees, training and qualification is an important issue. Every year, around 500,000 patients are treated on an inpatient or outpatient basis in more than 40 clinics and departments with 1,600 beds. Currently, about 3,100 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Ralf Bartenschlager | EurekAlert!
Further information:
http://www.klinikum.uni-heidelberg.de/DENGUE.104918.0.html
http://www.molecular-virology.uni-hd.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>