Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing RNAi at work

08.07.2015

How does single "RISC" accurately cleave and release target RNAs?

University of Tokyo and Kyoto University researchers have revealed the molecular mechanism of RNA interference (RNAi), the phenomenon by which the synthesis of a specific protein is inhibited, by real time observation of target RNA cleavage at the single-molecule level.


Shedding light on the single target cleavage reaction in RNAi. The target RNA cleavage reaction by the RNAi effector complex RISC was monitored in real time at the single-molecule level by using a special microscope. This illustration represents this process. © 2015 Hachiro Hongo and Hisashi Tadakuma.

The phenomenon of RNAi is expected to find applications in medical treatments. RNAi is mediated by RNA-induced silencing complex (RISC), which contains a small RNA and an Argonaute protein at its core and cleaves the target RNA.

However, there were no suitable tools to directly monitor the RNAi reaction and its molecular mechanism by which RISC cleaves the target RNA has remained unclear.

Now, a research group at the University of Tokyo (Professor Takuya Ueda, Professor Yukihide Tomari, Researcher Chunyan Yao and Research Associate Hiroshi M Sasaki,) and at Kyoto University (Researcher Hisashi Tadakuma), has developed a single-molecule imaging assay for observing target RNA cleavage by RISC in a test tube in real time for the first time, showing how RISC accurately cleaves and releases targets.

Specifically, their obsercations provide direct evidence for the model that the small RNA in the RISC consists of two parts, one of which quickly binds to the target RNA to be cleaved, while the other proofreads that the correct RNA has been found.

This groundbreaking result reveals RISC’s molecular mechanism of action and the illustration of this process was adopted as the cover design of this issue of the journal.

This achievement will also contribute to accelerating the research applications of RNAi such as to the development of RNA-based next-generation drugs, for example as gene therapy to suppress the production of a disease-causing protein.

Paper

Chunyan Yao, Hiroshi M Sasaki, Takuya Ueda, Yukihide Tomari and Hisashi Tadakuma, "Single-molecule analysis of the target cleavage reaction by Drosophila RNAi enzyme complex", Molecular Cell Online Edition: 2015/7/3 (Japan time), doi: 10.1016/j.molcel.2015.05.015.


Associated links
U Tokyo Research article

Euan McKay | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>