Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualization of DNA-Synthesis in vivo

13.12.2011
Researchers of the University of Zurich have discovered a new substance for labelling and visualization of DNA synthesis in whole animals.

Applications for this technique include identifying the sites of virus infections and cancer growth, due to the abundance of DNA replication in these tissues. This approach should therefore lead to new strategies in drug development.


F-ara-Edu injected into Zebrafish eggs
Picture: UZH

Interactions of biological macromolecules are the central bases of living systems. Biological macromolecules are synthesized in living cells by linking many small molecules together. Naturally occurring macromolecules include genetic materials (DNA) and proteins. A detailed understanding of the synthesis of these macromolecules in whole animals is a basic requirement for understanding biological systems, and for the development of new therapeutic strategies.

To visualize the synthesis of biomolecules in living organisms, artificial small molecules can be added to and incorporated by the cell’s own biosynthetic machinery. Subsequently, the modified biomolecules containing the artificial units can be selectively labelled with fluorescent substances. Until now, this approach had one major limitation: the substances used for labelling were toxic and caused cell death.

Anne Neef, a PhD student from the Institute of Organic Chemistry at the University of Zurich, has developed a new substance that can replace the natural nucleoside thymidine in DNA biosynthesis. This fluorinated nucleoside called “F-ara-Edu” labels DNA with little or no impact on genome function in living cells and even whole animals. “F-ara-Edu” is less toxic than previously reported compounds used for DNA labelling and it can be detected with greater sensitivity. “F-ara-Edu” is therefore ideally suited for experiments aimed at “birth dating” DNA synthesis in vivo. “As a demonstration of this, F-ara-Edu was injected into Zebrafish eggs immediately after fertilization. Following development and hatching of the fish, the very first cells undergoing differentiation in embryonic development could be identified”, explains Anne’s research advisor, Prof. Nathan Luedtke. “By visualizing new DNA synthesis in whole animals, the sites of virus infection and cancerous growth can be identified due to the abundance of DNA replication in these tissues”, adds Prof. Luedtke. This approach should therefore lead to new strategies in drug development.

Literature:
Anne Brigitte Neef, Nathan William Luedtke. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proceedings of the National Academy of Sciences of the United States of America. PNAS. November 29, 2011. doi:10.1073/pnas.1101126108

Nathalie Huber | idw
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>