Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New visible light photocatalyst kills bacteria, even after light turned off

20.01.2010
In the battle against bacteria, researchers at the University of Illinois have developed a powerful new weapon – an enhanced photocatalytic disinfection process that uses visible light to destroy harmful bacteria and viruses, even in the dark.

Based upon a new catalyst, the disinfection process can be used to purify drinking water, sanitize surgical instruments and remove unwanted fingerprints from delicate electrical and optical components.

“The new catalyst also has a unique catalytic memory effect that continues to kill deadly pathogens for up to 24 hours after the light is turned off,” said Jian Ku Shang, a professor of materials science and engineering at the U. of I.

Shang is corresponding author of a paper that is scheduled to appear in the Journal of Materials Chemistry, and posted on the journal’s Web site.

Shang’s research group had previously developed a catalytic material that worked with visible light, instead of the ultraviolet light required by other catalysts. This advance, which was made by doping a titanium-oxide matrix with nitrogen, meant the disinfection process could be activated with sunlight or with standard indoor lighting.

“When visible light strikes this catalyst, electron-hole pairs are produced in the matrix,” Shang said. “Many of these electrons and holes quickly recombine, however, severely limiting the effectiveness of the catalyst.”

To improve the efficiency of the catalyst, Shang and collaborators at the U. of I. and at the Chinese Academy of Sciences added palladium nanoparticles to the matrix. The palladium nanoparticles trap the electrons, allowing the holes to react with water to produce oxidizing agents, primarily hydroxyl radicals, which kill bacteria and viruses.

When the light is turned off, the palladium nanoparticles slowly release the trapped electrons, which can then react with water to produce additional oxidizing agents.

“In a sense, the material remembers that it was radiated with light,” Shang said. “This ‘memory effect’ can last up to 24 hours.”

Although the disinfection efficiency in the dark is not as high as it is in visible light, it enables the continuous operation of a unique, robust catalytic disinfection system driven by solar or other visible light illumination.

In addition to environmental applications, the new catalyst could also be used to remove messy, oily fingerprints from optical surfaces, computer displays and cellphone screens, Shang said.

The work was supported by the National Science Foundation through the Center of Advanced Materials for the Purification of Water with Systems at the U. of I. Some of the work was performed at the U. of I.’s Frederick Seitz Materials Research Laboratory, which is partially supported by the U.S. Department of Energy.

Editor’s notes: To reach Jian Ku Shang, call 217-333-9268; e-mail: jkshang@illinois.edu. To view or subscribe to the RSS feed for Science News at Illinois, go to: http://webtools.uiuc.edu/rssManager/608/rss.xml.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>