Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do-it-yourself viruses: How viruses self assemble

17.12.2012
A new model of the how the protein coat (capsid) of viruses assembles, published in BioMed Central's open access journal BMC Biophysics, shows that the construction of intermediate structures prior to final capsid production (hierarchical assembly) can be more efficient than constructing the capsid protein by protein (direct assembly).

The capsid enveloping a virus is essential for protection and propagation of the viral genome. Many viruses have evolved a self-assembly method which is so successful that the viral capsid can self assemble even when removed from its host cell.

The construction of large protein structures has been observed experimentally but the mechanism behind this is not well understood. Even the 'simple' icosahedral protein coat of the T1 virus requires integration of 60 protein components. Computational models of the physical interactions of component proteins are used to investigate the dynamics and physical constraints that regulate whether the components assemble correctly.

Using computer simulations a team from the Institute for Theoretical Physics and the Center for Quantitative Biology (BioQuant), University of Heidelberg, has compared direct and hierarchical assembly methods for T1 and T3 viruses. The team led by Ulrich S Schwarz, realised that direct assembly often led to the formation of unfavorable intermediates, especially when the dissociation rate was low, which hindered further assembly, causing the process to stall. In contrast, for many conditions hierarchical assembly was more reliable, especially if the bonds involved had a low dissociation rate.

Discussing the practical applications of these results, Dr Schwarz commented, "Hierarchical assembly has not been systematically investigated before. Theoretical models and computer simulations, like ours, can be used to understand the mechanism behind assembly of complex viruses and give an indication of how other large protein complexes assemble."

He continued, " With our computer simulations, we are now in a position to investigate systems which are too large to be studied by molecular resolution. This rational approach might have many applications not only in biomedicine, but also in materials science, where many researchers strive to learn from nature how to assembly complex structures."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes
1. Stochastic Dynamics of Virus Capsid Formation: Direct versus Hierarchical Self-Assembly Johanna E Baschek, Heinrich CR Klein and Ulrich S Schwarz BMC Biophysics (Section: Computational and theoretical biophysics) (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

Please credit images to Johanna E Baschek, Heinrich CR Klein and Ulrich S Schwarz. More images and videos are available on request.

2. BMC Biophysics is an open access journal publishing original peer-reviewed research articles in experimental and theoretical aspects of biological processes from the microscopic to macroscopic level, including thermodynamics, structural stability and dynamics, molecular biophysics, signalling, novel biophysical methods and computational biophysics.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>