Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could viruses be used to treat acne?

25.09.2012
Scientists have isolated and studied the genomes of 11 viruses, known as phage, that can infect and kill the acne-causing bacterium Propionibacterium acnes, potentially paving the way for topical therapies that use viruses or viral products to treat this vexing skin condition. Their results are reported in the September 25 issue of mBio®, the online open-access journal of the American Society for Microbiology.

"There are two fairly obvious potential directions that could exploit this kind of research," says Graham Hatfull of the University of Pittsburgh, an author of the study. "The first is the possibility of using the phages directly as a therapy for acne. The second is the opportunity to use phage-derived components for their activities."

P. acnes is a normal resident on human skin, but its numbers increase substantially at puberty, eliciting an inflammatory response that can lead to acne. Although antibiotics can be effective in treating acne, antibiotic-resistant strains of P. acnes have emerged, highlighting the need for better therapies.

Hatfull and his colleagues at the University of Pittsburgh along with scientists from the University of California, Los Angeles, isolated phages and P. acnes bacteria from human volunteers with and without acne, then sequenced the phages' genomes. What they found in those genomes was surprising. The phages were all remarkably similar, sharing more than 85% of their DNA, an unheard of level of similarity among viruses, which usually exhibit a great deal of diversity. This lack of genetic diversity suggests that resistance to phage-based antimicrobial therapy is less likely to develop, they say.

All of the phages carry a gene that makes a protein called endolysin, an enzyme that is thought to break down bacterial cell walls and kill the bacteria. Enzymes like this are used in other applications, says Hatfull, suggesting that endolysin from these phages might also be useful as a topical anti-acne therapeutic. "This work has given us very useful information about the diversity of that set of enzymes and helps pave the way for thinking about potential applications," he says.

From here, Hatfull says, research with these phages will explore how they might be used therapeutically, but phages like these can also provide useful tools, like genes and enzymes, that can be used to manipulate and understand the bacteria they infect. "The information derived from these phages helps contribute toward those kinds of genetic tools," says Hatfull.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>