Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could viruses be used to treat acne?

25.09.2012
Scientists have isolated and studied the genomes of 11 viruses, known as phage, that can infect and kill the acne-causing bacterium Propionibacterium acnes, potentially paving the way for topical therapies that use viruses or viral products to treat this vexing skin condition. Their results are reported in the September 25 issue of mBio®, the online open-access journal of the American Society for Microbiology.

"There are two fairly obvious potential directions that could exploit this kind of research," says Graham Hatfull of the University of Pittsburgh, an author of the study. "The first is the possibility of using the phages directly as a therapy for acne. The second is the opportunity to use phage-derived components for their activities."

P. acnes is a normal resident on human skin, but its numbers increase substantially at puberty, eliciting an inflammatory response that can lead to acne. Although antibiotics can be effective in treating acne, antibiotic-resistant strains of P. acnes have emerged, highlighting the need for better therapies.

Hatfull and his colleagues at the University of Pittsburgh along with scientists from the University of California, Los Angeles, isolated phages and P. acnes bacteria from human volunteers with and without acne, then sequenced the phages' genomes. What they found in those genomes was surprising. The phages were all remarkably similar, sharing more than 85% of their DNA, an unheard of level of similarity among viruses, which usually exhibit a great deal of diversity. This lack of genetic diversity suggests that resistance to phage-based antimicrobial therapy is less likely to develop, they say.

All of the phages carry a gene that makes a protein called endolysin, an enzyme that is thought to break down bacterial cell walls and kill the bacteria. Enzymes like this are used in other applications, says Hatfull, suggesting that endolysin from these phages might also be useful as a topical anti-acne therapeutic. "This work has given us very useful information about the diversity of that set of enzymes and helps pave the way for thinking about potential applications," he says.

From here, Hatfull says, research with these phages will explore how they might be used therapeutically, but phages like these can also provide useful tools, like genes and enzymes, that can be used to manipulate and understand the bacteria they infect. "The information derived from these phages helps contribute toward those kinds of genetic tools," says Hatfull.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
19.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>