Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses Communicate to Determine Bacterial Cell Fate

15.09.2008
A new study suggests that bacteria-infecting viruses – called phages – can make collective decisions about whether to kill host cells immediately after infection or enter a latent state to remain within the host cell.

The research, published in the September 15 issue of the Biophysical Journal, shows that when multiple viruses infect a cell, this increases the number of viral genomes and therefore the overall level of viral gene expression. Changes in viral gene expression can have a dramatic nonlinear effect on gene networks that control whether viruses burst out of the host cell or enter a latent state.

“What has confounded the virology community for quite some time is the observation that the cell fate of a bacteria infected by a single virus can be dramatically different than that infected by two viruses,” said Joshua Weitz, an assistant professor in the School of Biology at the Georgia Institute of Technology. “Our study suggests that viruses can collectively decide whether or not to kill a host, and that individual viruses ‘talk’ to each other as a result of interactions between viral genomes and viral proteins they direct the infected host to produce.”

To study viral infections, Weitz teamed with postdoctoral fellow Yuriy Mileyko, graduate student Richard Joh and Eberhard Voit, who is a professor in the Wallace H. Coulter Department of Biomedical Engineering, the David D. Flanagan Chair Georgia Research Alliance Eminent Scholar in Biological Systems and director of the new Integrative BioSystems Institute at Georgia Tech.

Nearly all previous theoretical studies have claimed that switching between “lysis” and “latency” pathways depends on some change in environmental conditions or random chance. However, this new study suggests that the response to co-infection can be an evolvable feature of viral life history.

For this study, the researchers analyzed the decision circuit that determines whether a virus initially chooses the pathway that kills the host cell – called the lytic pathway – or the pathway where it remains dormant inside the host cell – called the lysogenic pathway.

When the lytic pathway is selected, the virus utilizes bacterial resources to replicate and then destroys the host cell, releasing new viruses that can infect other cells. In contrast, in the lysogenic pathway, the viral genome inserts itself into the bacterial genome and replicates along with it, while repressing viral genes that lead to lysis. The virus remains dormant until host conditions change, which can result in a switch to the lytic pathway.

The decision of the genetic circuit that controls whether a virus initially chooses lysis or lysogeny is not random. Instead, cell fate is controlled by the number of infecting viruses in a coordinated fashion, according to the new study, which was funded by the Defense Advanced Research Projects Agency, the National Science Foundation and the Burroughs Wellcome Fund.

“In the case of perhaps the most extensively studied bacteriophage, lambda phage, experimental evidence indicates that a single infecting phage leads to host cell death and viral release, whereas if two or more phages infect a host the outcome is typically latency,” explained Weitz, who is a core member of the new Integrative BioSystems Institute at Georgia Tech. “We wanted to know why two viruses would behave differently than a single virus, given that the infecting viruses possess the same genetic decision circuit.”

To find out, the researchers modeled the complex gene regulatory dynamics of the lysis-lysogeny switch for lambda phage. They tracked the dynamics of three key genes – cro, cI and cII – and their protein production. The decision circuit involved both negative and positive feedback loops, which responded differently to changes in the total number of viral genomes inside a cell. The positive feedback loop was linked to the lysogenic pathway and the negative feedback loop was linked to the lytic pathway.

With a single virus, cro dominated and the lytic pathway prevailed. If the number of co-infecting viruses exceeded a certain threshold, the positive feedback loop associated with cI dominated, turning the switch to the lysogenic pathway. The differences in bacterial cell fate were stark and hinged upon whether or not one or two viruses were inside a given cell.

The researchers found that the cII gene acted as the gate for the system. Increasing the number of viruses drove the dynamic level of cII proteins past a critical point facilitating production of cI proteins leading to the lysogenic pathway.

“The decision circuit is a race between two pathways and in the case of a single virus, the outcome is biased toward lysis,” explained Weitz. “In our model, when multiple viruses infect a given cell, the overall production of regulatory proteins increases. This transient increase is reinforced by a positive feedback loop in the latency pathway, permitting even higher production of lysogenic proteins, and ultimately the latent outcome.”

The central idea in the model proposed by Weitz and collaborators is that increases in the overall amount of viral proteins produced from multiple viral genomes can have a dramatic effect on the nonlinear gene networks that control cell fate.

“Many questions still remain, including to what extent subsequent viruses can change the outcome of previously infected, but not yet committed, viruses, and to what extent microenvironments inside the host impact cell fate,” added Weitz. “Nonetheless, this study proposes a mechanistic explanation to a long-standing paradox by showing that when multiple viruses infect a host cell, those viruses can make a collective decision rather than behaving as they would individually.”

Technical Contact: Joshua Weitz (404-385-6169); E-mail: (jsweitz@gatech.edu).

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>