Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses cause bacteria to produce pink pigments

05.04.2016

Study by the University of Kaiserslautern

Plants use certain colour pigments in order to convert light into energy by way of photosynthesis. They allow plants to gather light energy. This also works in a similar way for microbes, for instance cyanobacteria.


Viruses from the ocean carry the genetic information for the turnover of the green pigment biliverdin to the pink pigment phycoerythrobilin.

The fact that a very large number of viruses are able to contribute towards pigment production has now been demonstrated by biologists from the University of Kaiserslautern with a colleague from Israel. The viruses introduce genetic material into the bacteria which then allows them to produce the pink-coloured pigments. The study has now been published in the renowned scientific journal ‘Environmental Microbiology’.

Cyanobacteria (also known as blue-green algae) and other oceanic bacteria are able to convert carbon dioxide and water into carbohydrates and oxygen with the help of sunlight, just like plants. “They use light-harvesting complexes in order to capture the energy from the light,” says microbiology Professor Nicole Frankenberg-Dinkel from the University of Kaiserslautern.

“These consist of proteins and colour pigments.” The latter are also responsible for the characteristic colouration. In the case of plants, for example, this is the green pigment ‘chlorophyll’, in cyanobacteria this is the blue pigment ‘phycocyanobilin’ and the pink pigment ‘phycoerythrobilin’.

“The synthesis of these pigments is already well understood,” the microbiologist adds. “So far researchers have only been able to demonstrate their presence in organisms which release oxygen through the process of photosynthesis.” In addition to this form of conventional photosynthesis performed by plants and cyanobacteria, there are also other variants that do not release any oxygen.

The biologists at Kaiserslautern sought to investigate, together with their Israeli research colleague and bioinformatician Oded Béjà (from the Technion-Israel Institute of Technology), the extent to which pigment synthesis is prevalent in certain marine regions. The biosynthesis of pink pigment ‘phycoerythrobilin’ was the focus of their work.

“The genetic information for the synthesis of the pink pigment is widespread throughout all the world’s oceans,” says the professor. This is where the researchers made a notable discovery: this information is wide spread in viruses.

“The viruses carry genetic information which can be used to produce the pink-coloured pigments,” Frankenberg-Dinkel explains. The viruses introduce this genetic information into bacterial cells which enable them to synthesise the pink pigment. “What is new is that we are able to use bioinformatic analyses to determine the type of viruses which carry this genetic information”, Frankenberg-Dinkel continues. “We were able to show that the viruses most likely affect those microbes for which we do not yet know what purpose the pigment serves.”

For her study, Frankenberg-Dinkel and her team analysed datasets obtained from metagenome databases. “These contain all the genetic information of all the organisms we would usually extract during a field trip at sea, for example,” the researcher explains. “This technique allows us to gain a detailed insight into the ecosystem without having to investigate it on location.”

The biologists from the University of Kaiserslautern work closely with their colleague from the Technion-Israel Institute of Technology in Haifa. This cooperation is funded by the German-Israeli Foundation for Scientific Research and Development.

The study was published in the renowned scientific journal ‘Environmental Microbiology’: Ledermann, B., Beja, O. & Frankenberg-Dinkel, N. (2016) New biosynthetic pathway for pink pigments from uncultured oceanic viruses.
doi:10.1111/1462-2920.13290

For enquiries:
Prof Dr Nicole Frankenberg-Dinkel
Department of Biology
Email: nfranken@bio.uni-kl.de
Tel.: +49 631/205-2353

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>