Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses cause bacteria to produce pink pigments

05.04.2016

Study by the University of Kaiserslautern

Plants use certain colour pigments in order to convert light into energy by way of photosynthesis. They allow plants to gather light energy. This also works in a similar way for microbes, for instance cyanobacteria.


Viruses from the ocean carry the genetic information for the turnover of the green pigment biliverdin to the pink pigment phycoerythrobilin.

The fact that a very large number of viruses are able to contribute towards pigment production has now been demonstrated by biologists from the University of Kaiserslautern with a colleague from Israel. The viruses introduce genetic material into the bacteria which then allows them to produce the pink-coloured pigments. The study has now been published in the renowned scientific journal ‘Environmental Microbiology’.

Cyanobacteria (also known as blue-green algae) and other oceanic bacteria are able to convert carbon dioxide and water into carbohydrates and oxygen with the help of sunlight, just like plants. “They use light-harvesting complexes in order to capture the energy from the light,” says microbiology Professor Nicole Frankenberg-Dinkel from the University of Kaiserslautern.

“These consist of proteins and colour pigments.” The latter are also responsible for the characteristic colouration. In the case of plants, for example, this is the green pigment ‘chlorophyll’, in cyanobacteria this is the blue pigment ‘phycocyanobilin’ and the pink pigment ‘phycoerythrobilin’.

“The synthesis of these pigments is already well understood,” the microbiologist adds. “So far researchers have only been able to demonstrate their presence in organisms which release oxygen through the process of photosynthesis.” In addition to this form of conventional photosynthesis performed by plants and cyanobacteria, there are also other variants that do not release any oxygen.

The biologists at Kaiserslautern sought to investigate, together with their Israeli research colleague and bioinformatician Oded Béjà (from the Technion-Israel Institute of Technology), the extent to which pigment synthesis is prevalent in certain marine regions. The biosynthesis of pink pigment ‘phycoerythrobilin’ was the focus of their work.

“The genetic information for the synthesis of the pink pigment is widespread throughout all the world’s oceans,” says the professor. This is where the researchers made a notable discovery: this information is wide spread in viruses.

“The viruses carry genetic information which can be used to produce the pink-coloured pigments,” Frankenberg-Dinkel explains. The viruses introduce this genetic information into bacterial cells which enable them to synthesise the pink pigment. “What is new is that we are able to use bioinformatic analyses to determine the type of viruses which carry this genetic information”, Frankenberg-Dinkel continues. “We were able to show that the viruses most likely affect those microbes for which we do not yet know what purpose the pigment serves.”

For her study, Frankenberg-Dinkel and her team analysed datasets obtained from metagenome databases. “These contain all the genetic information of all the organisms we would usually extract during a field trip at sea, for example,” the researcher explains. “This technique allows us to gain a detailed insight into the ecosystem without having to investigate it on location.”

The biologists from the University of Kaiserslautern work closely with their colleague from the Technion-Israel Institute of Technology in Haifa. This cooperation is funded by the German-Israeli Foundation for Scientific Research and Development.

The study was published in the renowned scientific journal ‘Environmental Microbiology’: Ledermann, B., Beja, O. & Frankenberg-Dinkel, N. (2016) New biosynthetic pathway for pink pigments from uncultured oceanic viruses.
doi:10.1111/1462-2920.13290

For enquiries:
Prof Dr Nicole Frankenberg-Dinkel
Department of Biology
Email: nfranken@bio.uni-kl.de
Tel.: +49 631/205-2353

Katrin Müller | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>