Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using viruses to beat superbugs

26.03.2012
Viruses that can target and destroy bacteria have the potential to be an effective strategy for tackling hard-to-treat bacterial infections. The development of such novel therapies is being accelerated in response to growing antibiotic resistance, says Dr David Harper at the Society for General Microbiology's Spring Conference in Dublin.

Bacteriophages are viruses that can infect bacteria and multiply within them, breaking down the cell and destroying the bacteria - amplifying themselves in the process to deal with more bacteria.

They are found everywhere including in river water, soil, sewage and on the human body. Soon after their initial discovery in 1915, bacteriophages were investigated as antibacterial therapeutic agents. A limited understanding of their mode of action meant early work was often unsuccessful and with the advent of the chemical antibiotic era, bacteriophages were passed over as therapeutics.

Dr Harper, Chief Scientific Officer at AmpliPhi Bioscience in Bedfordshire explains why bacteriophages are being revisited as antibacterial agents. "Each bacteriophage is highly specific to a certain type of bacteria and needs the right bacterial host cell in order to multiply. The more bacterial targets there are, the quicker they grow by killing the host cells. Therefore it seems very likely that infections harbouring high numbers of bacteria will benefit most from bacteriophage therapy – for example chronically infected ears, lungs and wounds," he said.

"For these types of infection, only a tiny dose of the virus is needed - as small as one thousandth of a millionth of a gram. This can usually be administered directly to the site of infection in a spray, drops or a cream. The major advantage to bacteriophages is that they don't infect human cells so seem likely to be very safe to use."

Increasing resistance to antibiotics has meant that bacterial infections are becoming more and more difficult to treat. With fewer antibiotics available to treat drug-resistant infections, research into bacteriophage therapy has been accelerated. "The rate of new antibiotics coming onto the market does not match the rate of increasing drug-resistance. The need for new approaches to counter such high resistance is both urgent and vital. New approaches will save lives," stressed Dr Harper.

Clinical trials for bacteriophage therapy are now underway. The first clinical trial for safety was reported in 2005 and the results demonstrating the effectiveness of bacteriophage therapy were published in 2009. This clinical trial was conducted by AmpliPhi. The company is planning further clinical trials in conditions where existing antibacterial therapies are not able to help. "With the results of further clinical trials, once regulatory issues are overcome and future investment secured in this area of research, this should lead to the development of novel products suitable for widespread use to tackle bacterial diseases and overcome antibiotic resistance", said Dr Harper.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>