Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using viruses to beat superbugs

26.03.2012
Viruses that can target and destroy bacteria have the potential to be an effective strategy for tackling hard-to-treat bacterial infections. The development of such novel therapies is being accelerated in response to growing antibiotic resistance, says Dr David Harper at the Society for General Microbiology's Spring Conference in Dublin.

Bacteriophages are viruses that can infect bacteria and multiply within them, breaking down the cell and destroying the bacteria - amplifying themselves in the process to deal with more bacteria.

They are found everywhere including in river water, soil, sewage and on the human body. Soon after their initial discovery in 1915, bacteriophages were investigated as antibacterial therapeutic agents. A limited understanding of their mode of action meant early work was often unsuccessful and with the advent of the chemical antibiotic era, bacteriophages were passed over as therapeutics.

Dr Harper, Chief Scientific Officer at AmpliPhi Bioscience in Bedfordshire explains why bacteriophages are being revisited as antibacterial agents. "Each bacteriophage is highly specific to a certain type of bacteria and needs the right bacterial host cell in order to multiply. The more bacterial targets there are, the quicker they grow by killing the host cells. Therefore it seems very likely that infections harbouring high numbers of bacteria will benefit most from bacteriophage therapy – for example chronically infected ears, lungs and wounds," he said.

"For these types of infection, only a tiny dose of the virus is needed - as small as one thousandth of a millionth of a gram. This can usually be administered directly to the site of infection in a spray, drops or a cream. The major advantage to bacteriophages is that they don't infect human cells so seem likely to be very safe to use."

Increasing resistance to antibiotics has meant that bacterial infections are becoming more and more difficult to treat. With fewer antibiotics available to treat drug-resistant infections, research into bacteriophage therapy has been accelerated. "The rate of new antibiotics coming onto the market does not match the rate of increasing drug-resistance. The need for new approaches to counter such high resistance is both urgent and vital. New approaches will save lives," stressed Dr Harper.

Clinical trials for bacteriophage therapy are now underway. The first clinical trial for safety was reported in 2005 and the results demonstrating the effectiveness of bacteriophage therapy were published in 2009. This clinical trial was conducted by AmpliPhi. The company is planning further clinical trials in conditions where existing antibacterial therapies are not able to help. "With the results of further clinical trials, once regulatory issues are overcome and future investment secured in this area of research, this should lead to the development of novel products suitable for widespread use to tackle bacterial diseases and overcome antibiotic resistance", said Dr Harper.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>