Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus-like particle vaccine protects monkeys from chikungunya virus

29.01.2010
An experimental vaccine developed using non-infectious virus-like particles (VLP) has protected macaques and mice against chikungunya virus, a mosquito-borne pathogen that has infected millions of people in Africa and Asia and causes debilitating pain, researchers at the National Institutes of Health have found.

Scientists at the National Institute of Allergy and Infectious Diseases (NIAID) developed the vaccine because there is no vaccine or treatment for chikungunya virus infection. Details about the vaccine were published today in the online version of Nature Medicine.

"Increases in global travel and trade, and possibly climate change, may be contributing to the spread of disease-carrying mosquitoes into new areas," says NIAID Director Anthony S. Fauci, M.D. "Finding safe and effective human vaccines for chikungunya virus and other insect-borne pathogens is an important global health priority."

To develop the vaccine, scientists in NIAID's Vaccine Research Center (VRC) identified the proteins that give rise to chikungunya VLPs. The VLPs mimic actual virus particles but cannot cause infection, so they can be used safely as a vaccine to elicit immune responses. The researchers immunized rhesus macaques with the VLPs, waited 15 weeks before exposing the animals to chikungunya virus, and observed that the vaccine provided complete protection from infection.

When the group found that antibodies were responsible for immune protection, they transferred antibody-containing serum from the vaccinated macaques to mice with deficient immune systems. The mice then were exposed to a lethal dose of chikungunya virus, but the immune serum protected them from infection.

"This virus-like particle vaccine provides a promising way to protect against an emerging infectious disease threat," says VRC Director Gary Nabel, M.D., Ph.D. "This same approach could possibly extend to viruses related to chikungunya that cause fatal diseases such as encephalitis." Dr. Nabel says his group plans to seek approval for clinical trials to further evaluate the safety and efficacy of the vaccine in humans.

There are two VLP vaccines for other diseases approved by the Food and Drug Administration: one for hepatitis B and one for human papillomavirus. This study marks the first time that scientists have used VLPs in a vaccine to protect against chikungunya virus, which is in the genus Alphavirus. The group plans to determine whether VLPs will work against other alphaviruses, such as Western and Eastern equine encephalitis virus found in the United States and o'nyong-nyong virus found in Africa.

Investigators from Purdue University, the University of Texas Medical Branch at Galveston, and Bioqual, Inc., in Rockville, MD, collaborated with NIAID scientists on this study.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: W Akahata et al. A VLP vaccine for epidemic Chikungunya virus protects non-human primates against infection. Nature Medicine. DOI: 10.1038/nm.2105 (2010).

NIAID Office of Communications | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.nih.gov

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>