Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virus-free technique enables Stanford scientists to easily make stem cells pluripotent

Tiny circles of DNA are the key to a new and easier way to transform stem cells from human fat into induced pluripotent stem cells for use in regenerative medicine, say scientists at the Stanford University School of Medicine. Unlike other commonly used techniques, the method, which is based on standard molecular biology practices, does not use viruses to introduce genes into the cells or permanently alter a cell's genome.

It is the first example of reprogramming adult cells to pluripotency in this manner, and is hailed by the researchers as a major step toward the use of such cells in humans. They hope that the ease of the technique and its relative safety will smooth its way through the necessary FDA approval process.

"This technique is not only safer, it's relatively simple," said Stanford surgery professor Michael Longaker, MD, and co-author of the paper. "It will be a relatively straightforward process for labs around the world to begin using this technique. We are moving toward clinically applicable regenerative medicine."

The Stanford researchers used the so-called minicircles - rings of DNA about one-half the size of those usually used to reprogram cell - to induce pluripotency in stem cells from human fat. Pluripotent cells can then be induced to become many different specialized cell types. Although the researchers plan to first use these cells to better understand - and perhaps one day treat-human heart disease, induced pluripotent stem cells, or iPS cells, are a starting point for research on many human diseases.

"Imagine doing a fat or skin biopsy from a member of a family with heart problems, reprogramming the cells to pluripotency and then making cardiac cells to study in a laboratory dish," said cardiologist Joseph Wu, MD, PhD. "This would be much easier and less invasive than taking cell samples from a patient's heart." Wu is the senior author of the research, which will be published online Feb. 7 in Nature Methods. Research assistant Fangjun Jia, PhD is the lead author of the work.

Longaker is the deputy director of Stanford's Institute for Stem Cell Biology and Regenerative Medicine and director of children's surgical research at Lucile Packard Children's Hospital. Wu is an assistant professor of cardiology and of radiology, and a member of Stanford's Cardiovascular Institute. A third author, Mark Kay, MD, PhD, is the Dennis Farrey Family Professor in Pediatrics and professor of genetics.

The finding brings together disparate areas of Stanford research. Kay's laboratory invented the minicircles several years ago in a quest to develop suitable gene therapy techniques. At the same time, Longaker was discovering the unusual prevalence and developmental flexibility of stem cells from human fat. Meanwhile, Wu was searching for ways to create patient-specific cell lines to study some of the common, yet devastating, heart problems he was seeing in the clinic.

"About three years ago Mark gave a talk and I asked him if we could use minicircles for cardiac gene therapy," said Wu. "And then it clicked for me, that we should also be able to use them for non-viral reprogramming of adult cells."

The minicircle reprogramming vector works so well because it is made of only the four genes needed to reprogram the cells (plus a gene for a green fluorescent protein to track minicircle-containing cells). Unlike the larger, more commonly used DNA circles called plasmids, the minicircles contain no bacterial DNA, meaning that the cells containing the minicircles are less likely than plasmids to be perceived as foreign by the body. The expression of minicircle genes is also more robust, and the smaller size of the minicircles allows them to enter the cells more easily than the larger plasmids. Finally, because they don't replicate they are naturally lost as the cells divide, rather than hanging around to potentially muck up any subsequent therapeutic applications.

The researchers chose to test the reprogramming efficiency of the minicircles in stem cells from human fat because previous work in Wu and Longaker's lab has shown that the cells are numerous, easy to isolate and amenable to the iPS transformation, probably because of the naturally higher levels of expression of some reprogramming genes. They found that about 10.8 percent of the stem cells took up the minicircles and expressed the green fluorescent protein, or GFP, versus about 2.7 percent of cells treated with a more traditional DNA plasmid.

When the researchers isolated the GFP-expressing cells and grew them in a laboratory dish, they found that the minicircles were gradually lost over a period of four weeks. To be sure the cells got a good dose of the genes, they reapplied the minicircles at days four and six. After 14 to 16 days, they began to observe clusters of cells resembling embryonic stem cell colonies - some of which no longer expressed GFP.

They isolated these GFP-free clusters and found that they exhibited all of the hallmarks of induced pluripotent cells: they expressed embryonic stem cell genes, they had similar patterns of DNA methylation, they could become multiple types of cells and they could form tumors called teratomas when injected under the skin of laboratory mice. They also confirmed that the minicircles had truly been lost and had not integrated into the stem cells' DNA.

Altogether, the researchers were able to make 22 new iPS cell lines from adult human adipose stem cells and adult human fibroblasts. Although the overall reprogramming efficiency of the minicircle method is lower than that of methods using viral vectors to introduce the genes (about 0.005 percent vs. about 0.01-0.05 percent, respectively), it still surpasses that of using conventional bacterial-based plasmids. Furthermore, stem cells from fat, and, for that matter, fat itself, are so prevalent that a slight reduction in efficiency should be easily overcome.

"This is a great example of collaboration," said Longaker. "This discovery represents research from four different departments: pediatrics, surgery, cardiology and radiology. We were all doing our own things, and it wasn't until we focused on cross-applications of our research that we realized the potential."

"We knew minicircles worked better than plasmids for gene therapy," agreed Kay, "but it wasn't until I started talking to stem cell people like Joe and Mike that we started thinking of using minicircles for this purpose. Now it's kind of like 'why didn't we think of this sooner?'"

In addition to Longaker, Wu, Kay and Jia, other Stanford researchers involved in the work include Kitchener Wilson, MD; Ning Sun, PhD; Deepak Gupta, MD; Mei Huang, PhD; Zongjin Li, MD, PhD; Nicholas Panetta, MD; Zhi Ying Chen, PhD; and Robert Robbins, MD.

The research was supported by the Mallinckrodt Foundation, the National Institutes of Health, the Burroughs Wellcome Foundation, the American Heart Association, the California Institute for Regenerative Medicine, the Oak Foundation and the Hagey Laboratory for Pediatric Regenerative Medicine. More information about Stanford's Institute for Stem Cell Biology and Regenerative Medicine, and Stanford's Cardiovascular Institute, which supported the work, can be found at and at

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit

Krista Conger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>