Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus-fighting genes linked to mutations in cancer

14.04.2014

Genetic evidence supports role of gene family in cancer development

Researchers have found a major piece of genetic evidence that confirms the role of a group of virus-fighting genes in cancer development.

Our understanding of the biological processes that cause cancer is limited. UV light and smoking are two well-understood cancer-causing processes. Exposure to either of these processes causes distinguishable patterns of genetic damage, or 'signatures', on the genome that can lead to cancer. All cancer-causing processes leave their own distinct imprint or signature, on the genomes of cancer cells.

The APOBEC family of genes control enzymes that are believed to have evolved in humans to fight off viral infections. Scientists have speculated that these enzymes are responsible for a very distinct signature of mutations that is present in approximately half of all cancer types. Therefore, understanding the cancer-causing process behind this common genetic signature is pivotal for disease control and prevention.

The team studied the genomes of breast cancers in patients with a specific inherited deletion in two of these APOBEC genes. They found that these cancer genomes had a much greater prevalence of the distinct mutational signature that is thought to be driven by the APOBEC family of genes.

"The increased frequency of this common cancer signature in breast cancer patients with APOBEC gene abnormalities supports our theory that these enzymes play a role in generating this mutational signature," says Dr Serena Nik-Zainal, first author from the Wellcome Trust Sanger Institute.

This genetic deletion is found on chromosome 22 where the APOBEC genes, APOBEC3A and APOBEC3B, sit next to each other. Women with this genetic deletion have previously been reported to be more susceptible to breast cancer.

The team examined 923 samples of breast cancer from women from across the world and found more than 140 people with either one or two copies of the deletion on each chromosome. Breast cancer in women with the deletion had a much greater quantity of mutations of this particular genetic signature.

However, the mutational activity of the APOBEC genes appears to be a double-edged sword. This genetic deletion is much more prevalent in some populations than others: it is found in only 8 per cent of Europeans, but is present in 93 per cent of the population of Oceania. Although this deletion increases risk of cancer development, it also seems to provide a currently unknown advantage in populations where it is more common.

"In addition to this APOBEC mediated process, there appear to be many more cancer-causing mutational processes, the underlying nature of which has yet to be understood," says Professor Sir Mike Stratton, lead author and Director of the Sanger Institute. "Working out what these mutational processes are will have profound implications in the future for how we prevent and treat cancer."

###

Notes to Editors

Publication Details

Serena Nik-Zainal et al (2014). 'Association of a common germline copy number polymorphism of APOBEC3A/3B with burden of putative APOBEC-dependent mutations in breast cancer'

Advanced online publication in Nature Genetics. DOI: 10.1038/ng.2955

Funding

A full list of funding can be found on the paper.

Participating Centres

  • Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
  • Department of Medical Genetics, Box 134, Addenbrooke's Hospital NHS Trust, Hills Road, Cambridge CB2 0QQ
  • Section of Oncology, Department of Clinical Science, University of Bergen, Norway
  • Department of Oncology, Haukeland University Hospital, Bergen, Norway
  • Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
  • Regional Genetics Laboratories, Box 143, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ
  • Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK

     

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | Eurek Alert!

Further reports about: CB2 Genetics Genome NHS Oncology Trust breast chromosome 22 genes genetic signature

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>