Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus-fighting genes linked to mutations in cancer

14.04.2014

Genetic evidence supports role of gene family in cancer development

Researchers have found a major piece of genetic evidence that confirms the role of a group of virus-fighting genes in cancer development.

Our understanding of the biological processes that cause cancer is limited. UV light and smoking are two well-understood cancer-causing processes. Exposure to either of these processes causes distinguishable patterns of genetic damage, or 'signatures', on the genome that can lead to cancer. All cancer-causing processes leave their own distinct imprint or signature, on the genomes of cancer cells.

The APOBEC family of genes control enzymes that are believed to have evolved in humans to fight off viral infections. Scientists have speculated that these enzymes are responsible for a very distinct signature of mutations that is present in approximately half of all cancer types. Therefore, understanding the cancer-causing process behind this common genetic signature is pivotal for disease control and prevention.

The team studied the genomes of breast cancers in patients with a specific inherited deletion in two of these APOBEC genes. They found that these cancer genomes had a much greater prevalence of the distinct mutational signature that is thought to be driven by the APOBEC family of genes.

"The increased frequency of this common cancer signature in breast cancer patients with APOBEC gene abnormalities supports our theory that these enzymes play a role in generating this mutational signature," says Dr Serena Nik-Zainal, first author from the Wellcome Trust Sanger Institute.

This genetic deletion is found on chromosome 22 where the APOBEC genes, APOBEC3A and APOBEC3B, sit next to each other. Women with this genetic deletion have previously been reported to be more susceptible to breast cancer.

The team examined 923 samples of breast cancer from women from across the world and found more than 140 people with either one or two copies of the deletion on each chromosome. Breast cancer in women with the deletion had a much greater quantity of mutations of this particular genetic signature.

However, the mutational activity of the APOBEC genes appears to be a double-edged sword. This genetic deletion is much more prevalent in some populations than others: it is found in only 8 per cent of Europeans, but is present in 93 per cent of the population of Oceania. Although this deletion increases risk of cancer development, it also seems to provide a currently unknown advantage in populations where it is more common.

"In addition to this APOBEC mediated process, there appear to be many more cancer-causing mutational processes, the underlying nature of which has yet to be understood," says Professor Sir Mike Stratton, lead author and Director of the Sanger Institute. "Working out what these mutational processes are will have profound implications in the future for how we prevent and treat cancer."

###

Notes to Editors

Publication Details

Serena Nik-Zainal et al (2014). 'Association of a common germline copy number polymorphism of APOBEC3A/3B with burden of putative APOBEC-dependent mutations in breast cancer'

Advanced online publication in Nature Genetics. DOI: 10.1038/ng.2955

Funding

A full list of funding can be found on the paper.

Participating Centres

  • Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
  • Department of Medical Genetics, Box 134, Addenbrooke's Hospital NHS Trust, Hills Road, Cambridge CB2 0QQ
  • Section of Oncology, Department of Clinical Science, University of Bergen, Norway
  • Department of Oncology, Haukeland University Hospital, Bergen, Norway
  • Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
  • Regional Genetics Laboratories, Box 143, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ
  • Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK

     

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | Eurek Alert!

Further reports about: CB2 Genetics Genome NHS Oncology Trust breast chromosome 22 genes genetic signature

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>