Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus attacks childhood cancers

30.08.2011
Researchers from Yale University are looking to a virus from the same family as the rabies virus to fight a form of cancer primarily found in children and young adults. They report their findings in the September 2011 issue of the Journal of Virology.

Soft tissue sarcomas are cancers that develop in tissues which connect, support, or surround other structures and organs of the body. Muscles, tendons, fibrous tissues, fat, blood vessels, nerves, and synovial tissues are types of soft tissue. While relatively rare in adults, they represent approximately 15% of pediatric malignancies and result in death for approximately one-third of patients within 5 years of diagnosis.

Vesicular stomatitis virus (VSV) is a rhabdovirus, which is the same family of viruses as rabies, and causes a disease similar to foot and mouth disease in cattle. Recent research has discovered that this virus also is oncolytic, meaning it seeks out and destroys cancerous tumors. Previous studies have already shown VSV to be promising in treating brain tumors in mice.

In this study the researchers investigated the potential of VSV and an oncolytically enhanced version of the virus (VSV-rp30a) to effectively target and kill 13 different sarcomas. Both of the viruses efficiently infected and killed 12 of the sarcomas. The resistance of the one surviving sarcoma line was eventually overcome by pretreatment with compounds that antagonize interferon signaling.

Additionally they looked at the ability of VSV-rp30a to infect and arrest tumor growth in mice.

"A single intravenous injection of VSV-rp30a selectively infected all subcutaneous human sarcomas tested in mice and arrested the growth of tumors that otherwise grew 11-fold," say the researchers. "Overall, we find that the potential efficacy of VSV as an oncolytic agent extends to nonhematologic mesodermal tumors and that unusually strong resistance to VSV oncolysis can be overcome with interferon attenuators."

(Paglino, J.C. and van den Pol, A.N. 2011. Vesicular stomatitis virus has extensive oncolytic activity against human sarcomas: Rare resistance is overcome by blocking interferon pathways. Journal of Virology. 85:9346-9358.)

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: VSV Virology Virus blood vessel brain tumor cancerous tumor

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>