Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus 'barcodes' offer rapid detection of mutated strains

14.05.2012
Dr Julian Hiscox and Dr John Barr of the University's Faculty of Biological Sciences are working with the Health Protection Agency Porton (HPA) to build a bank of molecular signatures that will help identify the severity of virus infection from characteristic changes seen in cells.

Currently the team is barcoding different strains of influenza virus and human respiratory syncytial virus (HRSV) - a virus associated with the onset of asthma in young children.

"Diseases such as flu infect and hijack our cells, turning them into virus producing factories," says Dr Hiscox. "The infection causes the balance of proteins in a cell to change - some proteins are overproduced and others suppressed. Which proteins are affected and by how much varies depending on the type of virus, allowing us to identify a unique barcode of disease for each."

The research, published today (14 May) in Proteomics, investigates changes in lung cells infected with swine flu from the 2009 outbreak compared with seasonal flu. The team used a labelling technique called SILAC to measure and compare thousands of different proteins in a sample.

This technique was used alongside mass spectrometry to identify the proteins most affected by viral infection and used these as molecular signatures to provide the 'barcode' of disease. The paper reports how several processes in the cell were affected by the virus, with most changes seen in proteins involved in cell replication.

"Swine flu affects the lungs in a similar way to seasonal flu and this was reflected in the barcodes we found for each," explains Dr Barr. "Using this test might have been a way to identify how lethal the 2009 swine flu pandemic was going to be, lessening worldwide panic.

"Our next step is to test more lethal strains of flu, such as bird flu, to see how the barcodes differ. Flu virus frequently mutates, resulting in new strains which may be life-threatening and become pandemic. If we can test new strains using our method, we can determine their potential impact on health by comparing their barcode of disease to those of viruses already studied."

The group from Leeds has already barcoded two types of HRSV which can cause severe respiratory disease in young children. Co-author Professor Miles Carroll of HPA Porton says: "We have focused our work on common respiratory viruses, such as flu and HRSV, but this method could be applied to a wide variety of viruses, including tropical diseases that are prone to sudden outbreaks and can be lethal."

The research was funded by the National Institute for Health Research (NIHR), the Biotechnology and Biological Sciences Research Council (BBSRC) and the Medical Research Council (MRC).

Dr Julian Hiscox | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>