Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual research institute needed to unlock RNA's promise

11.10.2010
European Science Foundation reports on the future of ribonucleic acid research

A Europe-wide network of labs focusing on RNA research is needed to make the most of RNA's high potential for treating a wide range of diseases. The recommendation for this virtual research institute comes from a panel of biologists at the European Science Foundation in a report published today, 'RNA World: a new frontier in biomedical research'.

Ten years on from the human genome project, RNA (ribonucleic acid) has stolen some of DNA's limelight. The basic ingredient of our genes, DNA long outshone the other form of genetic material in our cells, RNA. RNA was seen as a simple stepping stone in the cell's gene-reading activities.

Research over the last decade has shown RNA to be a remarkable molecule and a multi-talented actor in heredity. It is thought to be a major participant in the chemical reactions that led to the origins of life on Earth - the 'RNA World' hypothesis. RNA also controls genes in a way that was only recently discovered: a process called RNA interference, or RNAi. Medical researchers are currently testing new types of RNAi-based drugs for treating conditions such as macular degeneration, the leading cause of blindness, and various infections, including those caused by HIV and the herpes virus.

"RNA could bring significant advances to the diagnosis, treatment and prevention of many human diseases," said Professor Jörg Vogel from the University of Würzburg, Germany, who co-chaired the report. "In the global context, it's surprising that Europe doesn't have many centres specifically funded for and dedicated to it, particularly in comparison to the US. We strongly recommend creating a network of RNA centres, linked together as a Europe-wide 'virtual institute'. A first step could involve calls through the European Commission and national funders. "

The virtual RNA institute would be made up of locally-funded, multidisciplinary centres with a critical mass of strong research groups in disciplines such as biology, biochemistry, chemistry, genetics, bioinformatics, biophysics, structural analysis, microbiology, plant sciences and clinical medicine. This environment could be well-suited to promoting superior training of a generation of young scientists, PhD students and postdoctoral researchers. They could also help deliver dedicated education programmes for RNA research, which are currently lacking.

A particular area where an increasing demand in the future can be foreseen is, as in almost all other areas of life science, bioinformatics. "A new generation of bioinformaticians needs to be trained to meet future demand, in RNA research and in many other areas of the life sciences," continues Professor Vogel.

New models for public funding of infrastructure and resources for promising compounds to be used in the clinic should be developed. The financial burden for taking basic compounds and developing them into drugs could be shared by academic-industrial partnerships.

'RNA World: a new frontier in biomedical research' reviews the high pace of discovery in RNA research and gives a 5-10 year outlook of how both basic RNA research and its use in clinical practice should develop. Nine thematic priority areas were identified to address new and promising opportunities for biomedical, biotechnological, pharmaceutical and clinical RNA research.

For more information about the thematic areas and detailed recommendations, the Forward Look 'RNA World: a new frontier in biomedical research' is available online: www.esf.org/publications/

Chloe Kembery | EurekAlert!
Further information:
http://www.esf.org

Further reports about: RNA RNA research Science TV biomedical research life science medical research

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>