Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Reality Gives Insight on Protein Structures

16.07.2010
To understand a protein, it helps to get inside of it, and a University of Arkansas professor has figured out a way to do so.

James F. Hinton, University Professor of chemistry and biochemistry, has worked with Virtalis, an advanced visualization company, to create a computer software program and projection system that lets a person look at larger-than-life, 3-D structures of proteins in virtual reality. This allows scientists to walk inside, through or around the protein of interest for investigating its structure and function.

“Proteins are very complex molecular structures,” said Hinton. Proteins are built from amino acids, molecules that share certain characteristics and have unique side chains. Yeast proteins can have 466 amino acids, while the larger proteins have almost 27,000 amino acids. These amino acids interact to form a particular structure for each protein, and this structure helps to determine the function of the protein.

Since proteins underlie most human diseases, they interest researchers studying the underlying mechanisms of disease. The flu virus, for instance, harbors proteins that cause the illness experienced by humans. The bacterium Staphylococcus aureus produces a toxic protein that causes many of the symptoms experienced by the body. Figuring out how to neutralize these proteins could help treat or prevent disease.

Scientists find that examining protein interactions in two dimensions ranges from tedious to impossible because of the proteins’ size and complexity. Hinton worked with the advanced visualization company Virtalis to develop the ActiveMove Virtual Reality system for PyMOL, a three-dimensional molecular viewing program. The Virtalis system allows researchers to enlarge the protein to room-size and examine it from all sides, including the inside, which can be crucial for understanding the relationship between structure and function.

“Using this system, we can answer many questions about interactions. Why does a toxic protein do what it does? Does the protein form a channel? If it does, what does it look like? And how can we block it?” Hinton said. “This system can act as a guide for what to do next.”

Many proteins, such as a mushroom-shaped toxin from Staphylococcus aureus, form channels to perform their functions and carry out their interactions through binding to other proteins. By virtually exploring the proteins, scientists can determine what kinds of interactions might block the toxic functions of such a protein, or make virtual modifications to the proteins themselves to see if the modifications render them unable to interact and bind to other proteins.

“Thanks to the National Institutes of Health, which has funded the University’s Center for Protein Structure and Function for many years, we have superb instrumentation,” Hinton said. “The immersive Virtual Reality System provides us with another way of enhancing the data we get from those instruments.”

The ActiveMove system includes a 3-D projector with a rear projections screen, coupled with a personal computer, eyewear, head and hand tracking and Virtalis software and support. Funds from the Arkansas Biosciences Institute were used to purchase the Virtalis Virtual Reality System.

CONTACTS:
James F. Hinton, University Professor, chemistry and biochemistry
J. William Fulbright College of Arts and Sciences
479-575-5143, jhinton@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>