Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virtual bees help to unravel complex causes of colony decline


New computer model to help scientists, beekeepers and regulators to understand multiple environmental effects on honeybee colonies

Scientists have created an ingenious computer model that simulates a honey bee colony over the course of several years. The BEEHAVE model, published today in the Journal of Applied Ecology, was created to investigate the losses of honeybee colonies that have been reported in recent years and to identify the best course of action for improving honeybee health.

The Virtual Beehive: BEEHAVE Model Screen Shot

This is a screen shot of the BEEHAVE model showing the virtual beehive in action.

Credit: University of Exeter

A team of scientists, led by Professor Juliet Osborne from the Environment and Sustainability Institute, University of Exeter (and previously at Rothamsted Research), developed BEEHAVE, which simulates the life of a colony including the queen's egg laying, brood care by nurse bees and foragers collecting nectar and pollen in a realistic landscape.

Professor Juliet Osborne said: "It is a real challenge to understand which factors are most important in affecting bee colony growth and survival. This is the first opportunity to simulate the effects of several factors together, such as food availability, mite infestation and disease, over realistic time scales."

The model allows researchers, beekeepers and anyone interested in bees, to predict colony development and honey production under different environmental conditions and beekeeping practices. To build the simulation, the scientists brought together existing honeybee research and data to develop a new model that integrated processes occurring inside and outside the hive.

The first results of the model show that colonies infested with a common parasitic mite (varroa) can be much more vulnerable to food shortages. Effects within the first year can be subtle and might be missed by beekeepers during routine management. But the model shows that these effects build up over subsequent years leading to eventual failure of the colony, if it was not given an effective varroa treatment.

BEEHAVE can also be used to investigate potential consequences of pesticide applications. For example, the BEEHAVE model can simulate the impact of increased loss of foragers. The results show that colonies may be more resilient to this forager loss than previously thought in the short-term, but effects may accumulate over years, especially when colonies are also limited by food supply.

BEEHAVE simulations show that good food sources close to the hive will make a real difference to the colony and that lack of forage over extended periods leaves them vulnerable to other environmental factors. Addressing forage availability is critical to maintaining healthy hives and colonies over the long term.

Professor Osborne added: "The use of this model by a variety of stakeholders could stimulate the development of new approaches to bee management, pesticide risk assessment and landscape management. The advantage is that each of these factors can be tested in a virtual environment in different combinations, before testing in the field. Whilst BEEHAVE is mathematically very complex, it has a user-friendly interface and a fully accessible manual so it can be explored and used by a large variety of interested people".

BEEHAVE is freely available at

The project was funded by an Industrial Partnership Award from BBSRC with co-funding from Syngenta. It involved collaboration between ecologists and modellers from Exeter (Professor Osborne, Dr Becher and Dr Kennedy, who started the project at Rothamsted Research), Helmholtz Centre for Environmental Research - UFZ Leipzig (Professor Grimm and Ms Horn) and Syngenta (Dr P Thorbek).

Professor Osborne's research group studies the behaviour and ecology of bees and other pollinators. They started the project when based at Rothamsted Research and moved to the University of Exeter in 2012. They work with beekeepers, conservation organisations, farmers and industry with the aim of conserving bee populations, and protecting and promoting wild flower and crop pollination.

Professor Melanie Welham, BBSRC's Science Director, said: "Healthy bees are vital to our food supply as they pollinate many important crops. This virtual hive is an important new research tool to help us understand how changes to the environment impact on bee health."

Dr Pernille Thorbek (Syngenta) adds: "Studying several stressors in multifactorial field trials is immensely complicated and difficult to do. BEEHAVE is an important new tool which can simulate and explore interactions between stressors and can improve understanding and focus experimental work."

"BEEHAVE can help explore which changes to agricultural landscapes and beekeeping practices will benefit honeybees the most."

Dr David Aston, President of the British Beekeepers Association, commented that: "This model will be an important tool in helping us to understand the interactions and impact of the diverse stressors to which honey bee colonies can be exposed.

"Not only will it be invaluable for scientific research purposes but it will also be an important training tool to help beekeepers better understand the impacts of their husbandry and other factors on the health and survival of their colonies.

Rob Dawson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>