Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech study finds virus promising for prostate cancer treatment

09.04.2013
A study at the Virginia-Maryland Regional College of Veterinary Medicine has identified a chicken-killing virus as a promising treatment for prostate cancer in humans.

Researchers have discovered that a genetically engineered Newcastle disease virus, which harms chickens but not humans, kills prostate cancer cells of all kinds, including hormone-resistant cancer cells.

The work of Dr. Elankumaran Subbiah, associate professor of virology in the Department of Biomedical Sciences and Pathobiology, along with Dr. Siba Samal, associate dean and chairman of the University of Maryland’s Department of Veterinary Medicine, and Shobana Raghunath, a graduate student in Subbiah’s laboratory, appears in the April 2013 issue of the Journal of Virology.

“This potential treatment is available for immediate pre-clinical and clinical trials, but these are typically not done at the university level,” Subbiah said. “We are looking for commercial entities that are interested in licensing the technology for human clinical trials and treatment. Newcastle disease virus has yet to be tested as a treatment for prostate cancer in patients.”

About one in six men will develop prostate cancer. Patients typically receive hormone treatments or chemotherapy, both of which have adverse side effects. Subbiah hopes that the development of new treatment methodologies will not only better fight prostate cancer, but also lessen the side effects commonly associated with hormone treatments and chemotherapy.

Newcastle disease virus affects domestic and wild bird species, especially chickens, and is one of the most economically important viruses to the poultry industry. Although it can cause mild conjunctivitis and flu-like symptoms in humans who have been in close contact with infected birds, it does not pose a threat to human health.

Scientists first documented the cancer-fighting properties of Newcastle disease virus in the 1950s, but it is only with recent advances in reverse genetics technology that they have turned to the genetically engineered virus as a possible treatment.

“We modified the virus so that it replicates only in the presence of an active prostate-specific antigen and, therefore, is highly specific to prostate cancer. We also tested its efficacy in a tumor model in vitro,” Subbiah said. “The recombinant virus efficiently and specifically killed prostate cancer cells, while sparing normal human cells in the laboratory, but it would take time for this to move from the discovery phase to a treatment for prostate cancer patients.”

Earlier human clinical trials for other types of cancer with naturally occurring strains of Newcastle disease virus required several injections of the virus in large quantities for success. Subbiah believes that the recombinant virus would be able to eradicate prostate cancer in much lower doses. It would also seek out metastatic prostate cancer cells and remove them. Because it is cancer cell-type specific, “the recombinant virus will be extremely safe and can be injected intravenously or directly into the tumor,” Subbiah added.

Subbiah received a $113,000 concept award from the U.S. Department of Defense to develop his prostate cancer treatment under a Congressionally-directed medical research program. He is seeking additional foundation and corporate funds to take his research to the next level.

The researchers have also received a National Institutes of Health exploratory grant to develop the cell type-specific Newcastle disease virus for several other types of cancer cells, including breast, pancreas, brain, prostate, and multiple myeloma. “Although the virus can potentially treat many different types of cancer, we are focusing on these five,” Subbiah said.

The Virginia-Maryland Regional College of Veterinary Medicine is a leading biomedical and clinical research center, enrolling more than 500 Doctor of Veterinary Medicine and graduate students. A three-campus professional school, the college is operated by the land-grant universities of Virginia Tech and the University of Maryland. Its main campus in Blacksburg, Va., features the Veterinary Teaching Hospital where more than 55,000 animals are treated annually. Other campuses include the Marion duPont Scott Equine Medical Center in Leesburg, Va., and the Gudelsky Veterinary Center in College Park, Md., home of the Center for Public and Corporate Veterinary Medicine.

This article was written by Michael Sutphin.

Sherrie Whaley | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>