Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech researchers alter mosquito genome in step toward controlling disease

22.03.2013
Fralin Life Science Institute researchers use TALENS to alter mosquito genome

Virginia Tech researchers successfully used a gene disruption technique to change the eye color of a mosquito — a critical step toward new genetic strategies aimed at disrupting the transmission of diseases such as dengue fever.


Virginia Tech researchers successfully used a gene disruption technique to change the eye color of a mosquito -- a critical step toward new genetic strategies aimed at disrupting the transmission of diseases such as dengue fever. The varied colors of the eyes of these mosquitoes, modified using TALEN technology, is because of cell-to-cell variability in the degree of gene editing.

Credit: Virginia Tech

Zach Adelman and Kevin Myles, both associate professors of entomology in the College of Agriculture and Life Sciences and affiliated researchers with the Fralin Life Science Institute, study the transmission of vector-borne diseases and develop novel methods of control, based on genetics.

In a groundbreaking study recently published in the journal PLOS ONE, the scientists used a pair of engineered proteins to cut DNA in a site-specific manner to disrupt a targeted gene in the mosquito genome. Science magazine heralded these transcription activator-like effector nuclease proteins, known as TALENS, as a major scientific breakthrough in 2012, nicknaming them "genomic cruise missiles" for their ability to allow researchers to target specific locations with great efficiency.

While TALENS have been previously used to edit the genomes of animal and human cell cultures, applying them to the mosquito genome is a new approach, according to Adelman.

"Unlike model organisms with large collections of mutant strains to draw upon, the lack of reverse genetic tools in the mosquito has made it is very difficult to assign functions to genes in a definitive manner," Adelman said. "With the development of this technology, our understanding of the genetic basis of many critical behaviors such as blood-feeding, host-seeking and pathogen transmission should be greatly accelerated."

To test the capability of TALENs to specifically edit the mosquito genome, the scientists designed a pair of TALENS to target a gene whose protein product is essential to the production of eye pigmentation in Aedes aegypti, a mosquito species known for its transmission of the viruses that cause dengue fever.

Using the TALEN pair to edit the gene in the mosquito's germ cells early in development, they were able to change the eye color of a large percentage of the mosquitoes arising in the next generation from black to white.

"To date, efforts to control dengue transmission through genetics have focused entirely on adding material to the mosquito genome. Ensuring that this added material is expressed properly and consistently has been a challenge," Adelman said. "This technology allows us to pursue the same goals, namely, the generation of pathogen-resistant mosquitoes, through subtraction. For example, removing or altering a gene that is critical for pathogen replication."

"Aedes mosquitoes have become increasingly important as vectors of disease from a public health perspective," said George Dimopoulos, a professor of molecular microbiology and immunology at John Hopkins University who was not involved in the study. "The lack of vaccines and drugs for dengue has left the mosquitoes that carry the virus as one of the most promising targets for controlling the disease. A better understanding of how the virus infects the mosquito and other biological properties of the insect will be required to develop intervention strategies that can block virus transmission by the mosquito. The ability to genetically engineer mosquitoes is essential for the study of such biological functions. The TALEN-based system in mosquitoes that that was developed by Dr. Adelman provides this important capacity."

Co-authors of the study include Azadeh Aryan, a Ph.D. student in the department of entomology in the College of Agriculture and Life Sciences, and Michelle A.E. Anderson, a research technician in the department of entomology in the College of Agriculture and Life Sciences.

Lindsay Key | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>