Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VIMS reports intense and widespread algal blooms

02.09.2015

Researchers explore new tools to monitor scope and impacts

Water sampling and aerial photography by researchers at William & Mary's Virginia Institute of Marine Science show that the algal blooms currently coloring lower Chesapeake Bay are among the most intense and widespread of recent years.


An exceptionally dense bloom of Alexandrium monilatum was observed in lower Chesapeake Bay along the north shore of the York River between Sarah's Creek and the Perrin River on 8/17/2015.

Credit: © W. Vogelbein/VIMS.

VIMS professor Kimberly Reece reports that water samples collected near the mouth of the York River on August 17 contained up to 200,000 algal cells per milliliter, the densest concentration she has seen in nearly 10 years of field sampling. A sample with a concentration of even 1,000 algal cells per milliliter is visible to the naked eye and considered dense enough to be called a bloom.

The current blooms are dominated by a single-celled protozoan called Alexandrium monilatum, an algal species known to release toxins harmful to other marine life, particularly larval shellfish and finfish. Since mid-August, VIMS has received sporadic and localized reports of small numbers of dead fish, oysters, and crabs from the lower York River and adjacent Bay waters associated with nearby blooms, although a direct cause/effect relationship has not been established for any of these events.

Aerial photography and water sampling by VIMS professor Wolfgang Vogelbein between August 17th and 27th confirmed the blooms' intensity in the lower York River, and revealed that they extended much farther up the York River and out into Chesapeake Bay than previously reported. The flyovers were facilitated by the Virginia Marine Resources Commission.

"This is new and important information," says Vogelbein, "as we have never appreciated that Alexandrium extends so far into the mainstem of the Bay or so far up the York River." Bloom patches in the mainstem reach from the York River to the mouth of the Rappahannock River, across the Bay to within 3-4 miles of Cape Charles, and as far south as the Chesapeake Bay Bridge-Tunnel. The bloom patches are most dense on the western side of the Bay, with other areas experiencing less activity. "The main body of the bloom is several miles off shore," says Vogelbein, "and thus wasn't appreciated prior to the recent flyovers."

Alexandrium monilatum is one of several species of harmful algae that are of emerging concern in Chesapeake Bay. It was first conclusively detected in Bay waters in 2007, when Reece and colleagues used microscopy and DNA sequences to identify it as the dominant species of a bloom that persisted for several weeks in the York River. There are generic reports of Alexandrium in the Bay from the mid-1940s, and specific reports of A. monilatum in the mid-1960s, but none in the intervening decades.

The recent sampling and aerial photography show that the epicenter of the A. monilatum bloom is near the mouth of the York River. Smaller, less dense patches are visible within Mobjack Bay and its tributaries, the Back and Poquoson rivers, and near the mouth of the James and Elizabeth rivers.

Reports of algal blooms in the lower York River started around July 22nd. As in recent years, the initial summer blooms began with concentrations of the alga Cochlodinium polykrikoides, before shifting after 2-3 weeks into blooms dominated by A. monilatum. As of the last week of August, the A. monilatum bloom in the York River persists but has grown markedly less dense.

New tools to better understand blooms and toxins

Monitoring the scope and impacts of an algal bloom is notoriously difficult, particularly in areas like Chesapeake Bay where tides, winds, currents, and a convoluted shoreline combine to create blooms that are both patchy and ephemeral.

A further complication is that the blooms typically contain a changing mix of algal species, some of which may or may not--depending on environmental conditions--produce the toxins that transform an innocuous algal aggregation into a harmful algal bloom or HAB.

"We see high variation among our samples," says Reece, "even between those that were collected from sites a few hundred yards apart or taken from the same site a few hours apart."

To better characterize local blooms and their potential impacts, Reece and Vogelbein have recently joined with colleagues at VIMS and other institutions to bring new tools and techniques to their efforts.

One of these collaborations involves the use of Dataflow, a high-tech instrument used to monitor water quality over large areas. Deployed from a small boat operating at speeds up to 25 knots, Dataflow passes surface water collected through a keel-mounted pipe past an array of water-quality sensors that record dissolved oxygen, salinity, temperature, turbidity, chlorophyll, and pH--all parameters that relate to algal abundance.

In mid-August, VIMS professor Iris Anderson teamed with colleagues Jen Stanhope, Hunter Walker, and Gail Scott to run Dataflow through several bloom patches in the lower York River. This was supplemented by a simultaneous Dataflow run in the lower James River by colleagues at Old Dominion University and the Hampton Roads Sanitation District. Both teams are now comparing their sensor data with water samples taken enroute to further explore potential links between water quality and bloom characteristics.

The Dataflow runs got a serendipitous boost from an ongoing study of algal productivity by VIMS professor Mark Brush and post-doctoral researcher Sam Lake. Their monthly sampling of photosynthesis and respiration in the York River happened to take place on the same day and will help put the Dataflow measurements in a seasonal context.

On yet another front, VIMS professor Jian Shen will feed data from the Dataflow runs into his three-dimensional computer model of water flow in Chesapeake Bay. The model holds promise for predicting bloom dynamics, potentially giving shellfish growers and other concerned parties advance warning of any impacts.

The Dataflow cruises in the York and James rivers were also accompanied by over-flights from a NASA Langley airplane that was equipped with electromagnetic sensors and cameras, and by the collection of data from NASA satellites. Researchers are now "ground-truthing" the aerial and satellite imagery by comparing it with direct measurements of algae and water quality from samples collected at the same time and in the imaged locations.

Reece sees great promise in collaborating with scientists at NASA and NOAA to advance model development and the use of remote sensing for predicting algal bloom patterns in Chesapeake Bay.

Lab work and bioassays

Once water samples from a bloom are returned to VIMS, researchers in a number of labs begin the laborious process of identifying the species present and characterizing any toxins.

Members of the Reece lab--Bill Jones, Gail Scott, and Alanna MacIntyre--use both microscopic analyses and DNA tests to identify potentially harmful algal species. Development of these molecular DNA assays is a primary focus of Reece's research at VIMS. The lab group plans to extract and analyze DNA from about 300 of the 500 water samples collected so far this summer.

VIMS professor Juliette Smith--working with adjunct professor Tom Harris--has focused her efforts on characterizing the complex array of toxins that algae can generate. "A single cell can produce multiple toxins," says Smith. "In addition, the same toxin can be produced by multiple species. For instance, saxitoxins, which cause paralytic shellfish poisoning, can be produced by both dinoflagellates and cyanobacteria."

Smith and other researchers at VIMS are also testing to what degree bloom-derived toxins might be moving up the food web to impact marine life and potentially human health. Graduate student Sarah Pease is using funds from Virginia Sea Grant to monitor the health of caged oysters in waters near the Goodwin Islands, and is also working with Smith to conduct toxin analyses on oyster tissues.

Pease and Patrice Mason--members of Vogelbein's lab--are conducting toxicity "bioassays" with algae from both laboratory cultures and field samples. These tests involve bathing small numbers of oysters and finfish--both larvae and adults--in waters with increasing concentrations of algal cells and, more recently, isolated and purified toxins. They are a standard method for gauging the effects of HABs on living organisms. This year's bioassays are still in progress.

Media Contact

David Malmquist
davem@vims.edu
804-684-7011

 @VIMS_News

http://www.vims.edu 

David Malmquist | EurekAlert!

Further reports about: Chesapeake Bay DNA Marine VIMS algal bloom algal blooms mouth oysters toxins water quality

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>