Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Villain stomach bug may have a sweet side

11.02.2013
Virginia Tech researchers reveal how 'bad' gut bacteria may help control diabetes

A stomach bacterium believed to cause health problems such as gastritis, ulcers, and gastric cancer may play a dual role by balancing the stomach's ecosystem and controlling body weight and glucose tolerance, according to immunologists at the Virginia Bioinformatics Institute of Virginia Tech.

Usually the villain in studies of gastric cancer and peptic ulcers, Helicobacter pylori infect about half of the world's population although most infected individuals don't get sick. The bacterium's dwindling numbers coincide with the epidemic of obesity and diabetes in developed countries.

"H. pylori is the dominant member of the gastric microbiota and infects about half of the world population. While H. pylori infection can be associated with severe disease, it helps control chronic inflammatory, allergic, or autoimmune diseases," said Josep Bassaganya-Riera, director of the Nutritional Immunology and Molecular Medicine Laboratory and the Center for Modeling Immunity to Enteric Pathogens (MIEP) at Virginia Tech. "We demonstrated for the first time that gastric colonization with H. pylori exerts beneficial effects in mouse models of obesity and diabetes."

During the past 20 years, obesity in the United States has increased dramatically, according to the Centers for Disease Control and Prevention. About 36 percent of U.S. adults and approximately 17 percent of young people aged 2 to 19 years are obese. Obesity is the leading risk factor for type 2 diabetes and the rates of diabetes have increased in parallel with the rates of obesity.

Mice infected with H. pylori showed less insulin resistance than uninfected mice or other mice infected with a more virulent strain of H. pylori, according to the study, which was recently published in PLOS One. Researchers believe that whether the infection is harmful or beneficial depends on the interaction between the genetic makeup of H. pylori and the host's immune response.

H. pylori carrying the cytotoxin-associated gene pathogenicity island were harmful. But the bacteria with or without an atypical island may be integral to human stomach microbiota. Indeed, studies show that humans have been colonized by H. pylori for about 116,000 years.

The role of H. pylori as a pathogen does not provide an explanation as to why it has colonized the stomach of humans thousands of years. Our new findings suggest that H. pylori may provide important metabolic traits required to ameliorate diabetes that humans have not evolved on their own," Bassaganya-Riera said.

This suggests that the overuse of antibiotics for everything from misdiagnosed infections in humans to supplementary livestock feed may destroy beneficial bacteria and contribute directly to diseases such as obesity, allergies, inflammatory bowel disease, and asthma. It may be time for humans to reconsider how we can better co-exist with H. pylori and other microbes as a means of promoting health.

"This novel finding underscores the complex relationship between H. pylori and humans, with effects not limited to the stomach, but more broadly affecting systemic inflammation and metabolism," said Martin Blaser, the Frederick H. King Professor of Internal Medicine and chairman of the Department of Medicine, and professor of microbiology at New York University School of Medicine.

To better understand the complex relationship between H. pylori and the human host and to better predict health outcomes, the Center for Modeling Immunity to Enteric Pathogens has developed computer models of the mechanisms by which H. pylori interacts with the host and new tools for investigating such interactions," Bassaganya-Riera said.

MIEP is funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, under Contract No. HHSN272201000056C.

Tiffany Trent | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>