Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better viewing through fluorescent nanotubes when peering into innards of a mouse

31.05.2011
Developing drugs to combat or cure human disease often involves a phase of testing with mice, so being able to peer clearly into a living mouse's innards has real value.

But with the fluorescent dyes currently used to image the interior of laboratory mice, the view becomes so murky several millimeters under the skin that researchers might have more success divining the future from the rodent's entrails than they do extracting usable data.

Now Stanford researchers have developed an improved imaging method using fluorescent carbon nanotubes that allows them to see centimeters deep into a mouse with far more clarity than conventional dyes provide. For a creature the size of a mouse, a few centimeters makes a great difference.

"We have already used similar carbon nanotubes to deliver drugs to treat cancer in laboratory testing in mice, but you would like to know where your delivery went, right?" said Hongjie Dai, a professor of chemistry. "With the fluorescent nanotubes, we can do drug delivery and imaging simultaneously – in real time – to evaluate the accuracy of a drug in hitting its target."

Researchers inject the single-walled carbon nanotubes into a mouse and can watch as the tubes are delivered to internal organs by the bloodstream.

The nanotubes fluoresce brightly in response to the light of a laser directed at the mouse, while a camera attuned to the nanotubes' near infrared wavelengths records the images.

By attaching the nanotubes to a medication, researchers can see how the drug is progressing through the mouse's body.

Dai is the one of the authors of a paper describing the research published online this month in Proceedings of the National Academy of Sciences.

The key to the nanotubes' usefulness is that they shine in a different portion of the near infrared spectrum than most dyes.

Biological tissues – whether mouse or human – naturally fluoresce at wavelengths below 900 nanometers, which is in the same range as the available biocompatible organic fluorescent dyes. That results in undesirable background fluorescence, which muddles the images when dyes are used. But the nanotubes used by Dai's group fluoresce at wavelengths between 1,000 and 1,400 nanometers. At those wavelengths there is barely any natural tissue fluorescence, so background "noise" is minimal.

The nanotubes usefulness is further boosted because tissue scatters less light in the longer wavelength region of the near-infrared, reducing image smearing as light moves or travels through the body, another advantage over fluorophores emitting below 900nm.

"The nanotubes fluoresce naturally, but they emit in a very oddball region," Dai said. "There are not many things – living or inert – that emit in this region, which is why it has not been explored very much for biological imaging."

By selecting single-walled carbon nanotubes (SWNTS) with different chiralities diameters and other properties, Dai and his team can fine-tune the wavelength at which the nanotubes fluoresce.

The nanotubes are imaged immediately upon injection into the bloodstream of mice.

Dai and graduate students Sarah Sherlock and Kevin Welsher, who are also coauthors of the PNAS paper, observed the fluorescent nanotubes passing through the lungs and kidneys within seconds after injection. The spleen and liver lit up a few seconds later.

The group also did some "post-production" work on digital video footage of the circulating nanotubes to further enhance the image quality using a process called "principal component analysis."

"In the raw imaging, the spleen, pancreas and kidney might appear as one generalized signal," Sherlock said. "But this process picks up the subtleties in signal variation and resolves what at first appears to be one signal into the distinct organs."

"You can really see things that are deep inside or blocked by other organs such as the pancreas," Dai said.

There are some other imaging methods that can produce deep tissue images, such as magnetic resonance imaging (MRI) and computer tomography (CT) scans. But fluorescence imaging is widely used in research and requires simpler machinery.

Dai said that the fluorescent nanotubes are not capable of reaching the depth of CT or MRI scans, but nanotubes are a step forward in broadening the potential uses of fluorescence as an imaging system beyond the surface and near-surface applications it has been restricted to up until now.

Since nanotube fluorescence was discovered about ten years ago, researchers have been trying to make the fluorescence brighter, Dai said. Still, he has been a little surprised at just how well they now work in animals.

"I did not imagine they could really be used in animals to get deep images like these," he said. "When you look at images like this, you get a sense that the body almost has some transparency to it."

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>