Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Vicious cycle’ shields, spreads cancer cells

17.09.2013
Rice U. researchers find mucus-regulating protein receptors out of control in uterine, pancreatic cancers

A “vicious cycle” produces mucus that protects uterine and pancreatic cancer cells and promotes their proliferation, according to researchers at Rice University. The researchers offer hope for a therapeutic solution.


The presence of rosiglitazone may mitigate the mucus-producing cycle that protects uterine and pancreatic cancer cells and promotes metastasis, say researchers at Rice University. Normal cells produce MUC1, a glycoprotein that forms mucus, necessary to protect healthy cells. But in cancer cells, aberrant cell signaling allows EGFRs and MUC1 stimulate each other, allowing mucus to cover and protect the entire cell. “P” indicates phosphorylation, a step in the activation of EGFR required for increasing mucus levels. (Graphic by Brian Engel/Rice University)

They found that protein receptors on the surface of cancer cells go into overdrive to stimulate the production of MUC1, a glycoprotein that forms mucin, aka mucus. It covers the exposed tips of the elongated epithelial cells that coat internal organs like lungs, stomachs and intestines to protect them from infection.

But when associated with cancer cells, these slippery agents do their jobs too well. They cover the cells completely, help them metastasize and protect them from attack by chemotherapy and the immune system.

Details of the new work led by biochemist Daniel Carson, dean of Rice’s Wiess School of Natural Sciences, appear in the Journal of Cellular Biochemistry.

In the paper, Carson, lead author Neeraja Dharmaraj, a postdoctoral researcher, and graduate student Brian Engel described MUC1 overexpression as particularly insidious not only for the way it protects tumor cells and promotes metastasis, but also because the cells create a feedback loop in which epidermal growth factor receptors (EGFR) and MUC1 interact to promote each other.

Carson described EGFR as a powerful transmembrane protein that stimulates normal cell growth, proliferation and differentiation. “What hadn’t been considered is whether this activated receptor might actually promote the expression of MUC1, which would then further elevate the levels of EGFR and create this vicious cycle.

“That’s the question we asked, and the answer is ‘yes,’” he said.

Carson compared mucus to Teflon. “Things don’t stick to it easily, which is normally what you want. It’s a primary barrier that keeps nasty stuff like pathogenic bacteria and viruses from getting into your cells,” he said.

But cancer cells “subvert systems and find ways to get out of control,” he said. “They auto-activate EGFR by making their own growth factor ligands, for example, or mutating the receptor so it doesn’t require the ligand anymore. It’s always on.”

Mucin proteins can then cover entire surface of a cell. “That lets (the cell) detach and move away from the site of a primary tumor,” while still preventing contact with immune system cells and cytotoxins that could otherwise kill cancer cells, Carson said.

Hope comes in the form of a controversial drug, rosiglitazone, in the thiazolidinedione class of medications used in diabetes treatment, he said. The drug is suspected of causing heart problems over long-term use by diabetes patients. But tests on cancer cell lines at Rice found that it effectively attenuates the activation of EGFR and reduces MUC1 expression. That could provide a way to weaken the mucus shield.

“Chronic use of rosiglitazone can produce heart problems in a subset of patients, but if you’re dying of pancreatic cancer, you’re not worried about the long term,” Carson said. ”If you can reduce mucin levels in just a few days by using these drugs, they might make cancer cells easier to kill by established methods.”

He said more work is required to see if rosiglitazone or some variant is suitable for trials. “We think it’s best to understand all the effects,” he said. “That might give us a rational way to modify these compounds, to avoid unwanted side effects and focus on what we want them to do.”

Carson is the Schlumberger Chair of Advanced Studies and Research and a professor of biochemistry and cell biology with a joint appointment in the Department of Biochemistry and Molecular Biology at the University of Texas MD Anderson Cancer Center. He also is Rice’s vice provost for strategic partnerships.

The National Institutes of Health and Rice University supported the research.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Biochemistry EGFR MUC1 cancer cells heart problems immune system pancreatic cancer

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>