Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vesicles influence the function of nerve cells

07.10.2014

Neurons react to the transmission activity of exosomes on three fundamental levels

Tiny vesicles containing protective substances which they transmit to nerve cells apparently play an important role in the functioning of neurons. As cell biologists at Johannes Gutenberg University Mainz (JGU) have discovered, nerve cells can enlist the aid of mini-vesicles of neighboring glial cells to defend themselves against stress and other potentially detrimental factors.


Neurons (blue) which have absorbed exosomes (green) have increased levels of the enzyme catalase (red), which helps protect them against peroxides.

photo: Institute of Molecular Cell Biology, JGU


Cultivated neurons on a multielectrode array chip: the electrodes register the electrical impulses of the neurons.

photo: Institute of Physiology, Mainz University Medical Center

These vesicles, called exosomes, appear to stimulate the neurons on various levels: they influence electrical stimulus conduction, biochemical signal transfer, and gene regulation. Exosomes are thus multifunctional signal emitters that can have a significant effect in the brain.

The researchers in Mainz already observed in a previous study that oligodendrocytes release exosomes on exposure to neuronal stimuli. These exosomes are absorbed by the neurons and improve neuronal stress tolerance. Oligodendrocytes are a type of glial cell and they form an insulating myelin sheath around the axons of neurons.

The exosomes transport protective proteins such as heat shock proteins, glycolytic enzymes, and enzymes that reduce oxidative stress from one cell type to another, but also transmit genetic information in the form of ribonucleic acids.

"As we have now discovered in cell cultures, exosomes seem to have a whole range of functions," explained Dr. Eva-Maria Krämer-Albers. By means of their transmission activity, the small bubbles that are the vesicles not only promote electrical activity in the nerve cells, but also influence them on the biochemical and gene regulatory level.

"The extent of activities of the exosomes is impressive," added Krämer-Albers. The researchers hope that the understanding of these processes will contribute to the development of new strategies for the treatment of neuronal diseases. Their next aim is to uncover how vesicles actually function in the brains of living organisms.

The study was conducted in cooperation with the group of Professor Heiko Luhmann at the Institute of Physiology at the Mainz University Medical Center and bioinformaticians from the Institute of Molecular Biology (IMB) in Mainz.

Publication:
Dominik Fröhlich, Wen Ping Kuo, Carsten Frühbeis et al.
Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation
Philosophical Transactions of the Royal Society B, 18 August 2014
DOI: 10.1098/rstb.2013.0510

Further information:
Dr. Eva-Maria Krämer-Albers
Institute of Molecular Cell Biology / Biology for Medical Scientists
Faculty of Biology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-26257
fax +49 6131 39-23840
e-mail: alberse@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie

Weitere Informationen:

http://www.uni-mainz.de/presse/17633_ENG_HTML.php - press release ; http://rstb.royalsocietypublishing.org/content/369/1652/20130510 - Abstract ;
http://www.uni-mainz.de/presse/16545_ENG_HTML.php - press release "New mode of cellular communication discovered in the brain" (16 July 2013)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>