Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile Switch for Light-Controlled Cells

09.04.2015

Scientists from Jülich, Grenoble, Frankfurt and Moscow uncovered the atomic structure of KR2, a light-driven transporter for sodium ions which had only recently been discovered. Based on the structural information the team then identified a simple way to turn KR2 from a sodium- into a potassium pump using simple means.

Integrated into neurons, this could make KR2 a valuable tool for optogenetics, a new field of research that uses light-sensitive proteins as molecular switches to precisely control the activity of neurons and other electrically excitable cells using light impulses. The findings have been published in the journal Nature Structural and Molecular Biology.


The surface of the KR2 complex shown from the side. Each of the five KR2 molecules binds and transports a sodium ion (purple) across the membrane. The light-sensitive retinal inside the complex, which regulates pumping activity, is transparent.

Copyright: Forschungszentrum Jülich/IBS Grenoble


Left: Like all protein molecules, the KR2 pump consists of a single chain of amino acids folded into complex three-dimensional structure. Seven connected helices (yellow) form a channel inthe cell membrane through which sodium ions are transported. A structure unique among light-activated ion pumps is the additional short helix (blue) capping the outside opening of the pump like a lid. The pumping activity is driven by the small light-responsive retinal (green). Right: Under physiological conditions, five KR2 molecules spontaneously form a star-shaped pentameric complex.

Copyright: Forschungszentrum Jülich/IBS Grenoble

In 2013, scientists made an unexpected discovery while investigating the marine bacterium Krokinobacter eikastus. In its cellular membrane, the bacterium had a previously unknown type of ion transporter. The protein, which was dubbed KR2, belongs to a group of light-sensitive proteins that have become the basis of the research field of optogenetics.

When exposed to light, these proteins allow charged particles to flow into the cell or transport them outside the cell. Integrating these ion transporters into the neuronal membrane makes it possible to alter their state of charge using light impulses, thus enabling their activity to be precisely controlled. This method quickly became established in the neurosciences, in particular. However, only a few proteins are currently available for this and each of these proteins was only permeable to certain ions.

KR2 transports positively charged sodium ions out of the cell, which is a feature that so far had been missing in the toolkit of optogenetics. However, until now neither the exact atomic structure nor the ion transport mechanism had been known – which is an important prerequisite for utilizing KR2 and adapting it for specific applications.

This challenge awakened the interest of a team of structural biologists headed by Prof. Valentin Gordeliy, who heads research groups at the Institute of Complex Systems (ICS-6) at Forschungszentrum Jülich, Germany, at the Institute de Biologie Structurale in Grenoble, France, and at the Moscow Institute of Physics and Technology in Russia.

Using X-ray crystallography, the team obtained the first high-resolution 3D structural images of the single protein and the five-part complex that the KR2 molecule spontaneously forms under physiological conditions.

"The structure of KR2 has many unique features," says Ivan Gushchin, one of the lead authors of the study and a postdoc of Gordeliy. One of these features is a short protein helix capping the outfacing opening of the pump like a lid. A feature of KR2, that the scientists were particularly interested in was the unusual structure of the inward facing ion-uptake cavity, which was found to be unusually large and protruding from the protein surface. "We hypothesized that this structure could act as a kind of filter causing the selectivity of KR2 for sodium ions," Gushchin explains.

To put this idea to the test, Gordeliy´s team changed the structure by swapping specific amino acids at the site in question through targeted mutations. Not only did KR2 indeed lose its sodium-pumping ability; but also one of the mutations seemed to turn KR2 into a light-driven potassium pump – the first of its kind.

To accurately prove this observation the team performed a series of electrophysiological experiments with the purified protein in collaboration with Ernst Bamberg at the Max Planck Institute of Biophysics in Frankfurt am Main, who is an expert on membrane proteins and one of the founders of optogenetics.

For potential optogenetic application, this result is especially interesting, says Bamberg: "In neurons, transporting potassium ions from the cell is the natural mechanism of deactivation. Normally, an activated neuron will release them through passive potassium channels in the membrane. With a light-activated, active potassium pump this process could be precisely controlled."

This would make KR2 a very effective off-switch for neurons. Now, ways of integrating the pump into different types of cells need to be developed. "In combination with the light-activated Channelrhodopsin 2, which is used in labs worldwide as a molecular off-switch, the KR2 potassium pump would then form a perfect pair of tools for the precise control of nerve cell activity," says Bamberg.

Original publication:
Ivan Gushchin, Vitaly Shevchenko, Vitaly Polovinkin, Kirill Kovalev, Alexey Alekseev, Ekaterina Round, Valentin Borshchevskiy, Taras Balandin, Alexander Popov, Thomas Gensch, Christoph Fahlke, Christian Bamann, Dieter Willbold, Georg Büldt, Ernst Bamberg& Valentin Gordeliy:
Crystal structure of a light-driven sodium pump. Nature Structural & Molecular Biology (2015) doi:10.1038/nsmb.3002

Contact:

Prof. Dr. Valentin Gordeliy
Institute for Complex Systems, Structural Biochemistry (ICS-6)
Forschungszentrum Jülich
Institute de Biologie Structurale (CEA-CNRS-UJF), Grenoble
Tel: +49 2461 61-9509
E-Mail: g.valentin@fz-juelich.de, valentin.gordeliy@ibs.fr

Prof. Dr. Ernst Bamberg
Max Planck Institute of Biophysics, Frankfurt am Main
Tel:+49 69 6303-2000
E-Mail: secretary-bamberg@biophys.mpg.de

Press Contact:

Peter Zekert
Institute of Complex Systems, Strukturbiochemie (ICS-6)
Tel.: +49 (0) 2461 61-9711
E-Mail: p.zekert@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2015/15-04-09kr2-pu... Press release and images

Annette Stettien | Forschungszentrum Jülich

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>