Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile microRNAs choke off cancer blood supply, suppress metastasis

12.09.2013
Elevated miR-200 boosts survival of lung, ovarian, renal, triple-negative breast cancer patients

A family of microRNAs (miR-200) blocks cancer progression and metastasis by stifling a tumor's ability to weave new blood vessels to support itself, researchers at The University of Texas MD Anderson Cancer Center report today in Nature Communications.

Patients with lung, ovarian, kidney or triple-negative breast cancers live longer if they have high levels of miR-200 expression, the researchers found.

Subsequent experiments showed for the first time that miR-200 hinders new blood vessel development, or angiogenesis, and does so by targeting cytokines interleukin-8 (IL-8) and CXCL1.

"Nanoparticle delivery of miR-200 blocked new blood vessel development, reduced cancer burden and inhibited metastasis in mouse models of all four cancers," said Anil Sood, M.D., professor of Gynecologic Oncology, senior author of the study.

The team's findings highlight the therapeutic potential of nanoparticle-delivered miR-200 and of IL-8 as a possible biomarker for identifying patients who might benefit from treatment. Sood said safety studies will need to be completed before clinical development can begin.

Micro RNAs do not code for genes like their cousins, the messenger RNAs. They regulate gene activation and expression.

"We initially looked at miR-200 because we have an approach for targeting and delivering these molecules with nanoparticles and miR-200 is known to inhibit EMT, a cellular transition associated with cancer progression and metastasis," said Sood, who also holds the Bettyann Asche Murray Distinguished Professorship in Ovarian Cancer Research.

First author Chad Pecot, M.D., a fellow in Cancer Medicine, said initial research provided a new perspective. "Cautionary tales emerged from the literature about poor outcomes in hormone-positive breast cancer, so we decided to delve more deeply into understanding the mechanisms involved."

miR-200 effect differs by breast cancer type

Sood and colleagues analyzed hundreds of annotated ovarian, renal, breast and non-small cell lung cancer samples from The Cancer Genome Atlas for expression of all five miR-200 family members. Low expression of miR-200 was associated with poor survival in lung, ovarian and renal cancers, but improved survival for breast cancer.

However, they found a striking difference when they analyzed breast cancers by those that are hormone-receptor positive (luminal) and those that lack hormone receptors or the HER2 protein, called triple-negative breast cancer. High expression for miR-200 was associated with improved survival for triple-negative disease, which is more difficult to treat due to its lack of therapeutic targets.

Gene expression analysis of ovarian and lung cancer cell lines pointed to an angiogenesis network involving both IL-8 and CXCL1. By mining public miRNA and messenger RNA databases, the researchers found:

An inverse relationship between expression of four of the five members of the miR-200 family and IL-8.

Lung, ovarian, kidney and triple-negative breast cancer all have elevated IL-8 and CXCL1 expression compared to hormone-positive breast cancers.

Elevated IL-8 associated with poor overall survival in lung, ovarian, renal and triple-negative breast cancer cases.

Treating cancer cell lines with miR-200 decreased levels of IL-8 and CXCL1, and the team also identified binding sites for these genes, meaning they are direct miR-200 targets.

Mice treated with miR-200 family members delivered in a fatty nanoparticle developed by Sood and Gabriel Lopez, M.D., professor of Experimental Therapeutics, had steep reductions in lung cancer tumor volume, tumor size and the density of small blood vessels compared to controls. Results were repeated with kidney, ovarian and triple-negative breast cancers.

miR-200 nanoparticles stymie metastasis

In mouse models of lung and triple-negative breast cancers prone to spread to other organs, treatment with the miR-200 nanoliposomes significantly reduced the volume of the primary tumor and the number and size of metastases in other organs compared to controls. Similar results were observed in an ovarian cancer model, accompanied by sharp reductions in IL-8 levels and blood vessel formation.

Additional experiments showed that these therapeutic effects were due to blocking of IL-8 levels by miR-200. In tumors that had high amounts of synthetically produced IL-8 (designed so that miR-200 could not block it) the cancer burden was no longer reduced. Circulating IL-8 levels in the blood strongly correlated with tumor burden, Pecot said, suggesting it may serve as a possible biomarker for miR-200 treatment.

Treatment of blood vessels cuts metastases by 92 percent

The team then used a chitosan nanoparticle – derived from chitin in the shells of crustaceans – to deliver miR-200 straight to blood vessels. Combination delivery of two types of miR-200 reduced ovarian cancer metastases by 92 percent over controls.

Targeting a second ovarian cancer line with the chitosan nanoparticles also developed by Sood and colleagues, resulted in decreased primary and metastatic tumor burden and reduced blood vessel formation with no apparent toxicity observed in treated mice.

Co-authors with Sood, Pecot and Lopez are Rajesha Rupaimoole, Ph.D., Cristina Ivan, Ph.D., Chunhua Lu, Sherry Wu, Hee-Dong Han, Justin Bottsford-Miller, M.D., Behrouz Zand, M.D., Myrthala Moreno-Smith, Ph.D., Lingegowda Mangala, Ph.D., Ph.D., Morgan Taylor, Ph.D., Healther Dalton, Ph.D.,Yunfei Wen, Ph.D., and Yu Kang, M.D., all of the Gynecologic Oncology; Da Yang, Ph.D., Yuexin Liu, Ph.D., and Wei Zhang, Ph.D., of Pathology; Rehan Akbani, Ph.D., Anna Unruh, and Keith Baggerly, Ph.D., of Bioinformatics and Computational Biology; Maitri Shah, Cristian Rodriguez-Villasana, Ph.D., Vianey Gonzalez-Villasana, Ph.D., and George Calin, M.D., Ph.D., of Experimental Therapeutics; Sang Bae Kim, Vasudha Sehgal, Ph.D., Ju-Seog Lee, Ph.D., Prahlad Ram, Ph.D., and Ana-Maria Gonzalez-Angulo, M.D., of Breast Medical Oncology; Murali Ravoori and Vikas Kundra, M.D., Ph.D., of Experimental Diagnostic Imaging; Li Huang and Xinna Zhang of Cancer Biology; Rouba Ali-Fehmi, M.D., of Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit; and Pierre Massion, M.D., of Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tenn.

Sood, Lopez, Xinna Zhang, Wei Zhang, Calin, Mangala and Ivan are also with MD Anderson's Center for RNA Interference and Non-Coding RNA. Sang Bae Kim and Anna Unruh are students in The University of Texas Graduate School of Biomedical Sciences, a joint operation of MD Anderson and The University of Texas Health Science Center at Houston.

This research was funded by grants from the National Cancer Institute of the National Institutes of Health (CA109298, P50 CA083639, P50 CA098258, CA128797, RC2GM092599, U54 CA151668 and

U24CA143835, CA009666, CA90949, CA143883, T32 CA101642, and U24CA143835); the Cancer Prevention and Research Institute of Texas, the Ovarian Cancer Research Fund, Inc., The U.S. Department of Defense, The Marcus Foundation, Inc., Laura Lee Blanton Ovarian Cancer Endowed Fund, the Vanderbilt SPORE in lung cancer ; the 2011 Conquer Cancer Foundation ASCO Young Investigator Award, MD Anderson's Division of Cancer Medicine Advanced Scholar Program, The Cancer Genome Atlas MD Anderson Data Analysis Center, an MD Anderson Odyssey Fellowship, Diane Denson Tobola Fellowship for Ovarian Cancer Research and the Harold C. and Mary L. Dailey Endowment Fellowships.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht World’s fastest algorithm for recognising regular DNA sequences
04.05.2015 | Europäische Akademie Bozen - European Academy Bozen/Bolzano

nachricht Proteomics identifies DNA repair toolbox
04.05.2015 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015 | Life Sciences

Interzum 2015: WPC furniture with low flammability

04.05.2015 | Trade Fair News

Improved detection of radio waves from space

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>