Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile microRNAs choke off cancer blood supply, suppress metastasis

12.09.2013
Elevated miR-200 boosts survival of lung, ovarian, renal, triple-negative breast cancer patients

A family of microRNAs (miR-200) blocks cancer progression and metastasis by stifling a tumor's ability to weave new blood vessels to support itself, researchers at The University of Texas MD Anderson Cancer Center report today in Nature Communications.

Patients with lung, ovarian, kidney or triple-negative breast cancers live longer if they have high levels of miR-200 expression, the researchers found.

Subsequent experiments showed for the first time that miR-200 hinders new blood vessel development, or angiogenesis, and does so by targeting cytokines interleukin-8 (IL-8) and CXCL1.

"Nanoparticle delivery of miR-200 blocked new blood vessel development, reduced cancer burden and inhibited metastasis in mouse models of all four cancers," said Anil Sood, M.D., professor of Gynecologic Oncology, senior author of the study.

The team's findings highlight the therapeutic potential of nanoparticle-delivered miR-200 and of IL-8 as a possible biomarker for identifying patients who might benefit from treatment. Sood said safety studies will need to be completed before clinical development can begin.

Micro RNAs do not code for genes like their cousins, the messenger RNAs. They regulate gene activation and expression.

"We initially looked at miR-200 because we have an approach for targeting and delivering these molecules with nanoparticles and miR-200 is known to inhibit EMT, a cellular transition associated with cancer progression and metastasis," said Sood, who also holds the Bettyann Asche Murray Distinguished Professorship in Ovarian Cancer Research.

First author Chad Pecot, M.D., a fellow in Cancer Medicine, said initial research provided a new perspective. "Cautionary tales emerged from the literature about poor outcomes in hormone-positive breast cancer, so we decided to delve more deeply into understanding the mechanisms involved."

miR-200 effect differs by breast cancer type

Sood and colleagues analyzed hundreds of annotated ovarian, renal, breast and non-small cell lung cancer samples from The Cancer Genome Atlas for expression of all five miR-200 family members. Low expression of miR-200 was associated with poor survival in lung, ovarian and renal cancers, but improved survival for breast cancer.

However, they found a striking difference when they analyzed breast cancers by those that are hormone-receptor positive (luminal) and those that lack hormone receptors or the HER2 protein, called triple-negative breast cancer. High expression for miR-200 was associated with improved survival for triple-negative disease, which is more difficult to treat due to its lack of therapeutic targets.

Gene expression analysis of ovarian and lung cancer cell lines pointed to an angiogenesis network involving both IL-8 and CXCL1. By mining public miRNA and messenger RNA databases, the researchers found:

An inverse relationship between expression of four of the five members of the miR-200 family and IL-8.

Lung, ovarian, kidney and triple-negative breast cancer all have elevated IL-8 and CXCL1 expression compared to hormone-positive breast cancers.

Elevated IL-8 associated with poor overall survival in lung, ovarian, renal and triple-negative breast cancer cases.

Treating cancer cell lines with miR-200 decreased levels of IL-8 and CXCL1, and the team also identified binding sites for these genes, meaning they are direct miR-200 targets.

Mice treated with miR-200 family members delivered in a fatty nanoparticle developed by Sood and Gabriel Lopez, M.D., professor of Experimental Therapeutics, had steep reductions in lung cancer tumor volume, tumor size and the density of small blood vessels compared to controls. Results were repeated with kidney, ovarian and triple-negative breast cancers.

miR-200 nanoparticles stymie metastasis

In mouse models of lung and triple-negative breast cancers prone to spread to other organs, treatment with the miR-200 nanoliposomes significantly reduced the volume of the primary tumor and the number and size of metastases in other organs compared to controls. Similar results were observed in an ovarian cancer model, accompanied by sharp reductions in IL-8 levels and blood vessel formation.

Additional experiments showed that these therapeutic effects were due to blocking of IL-8 levels by miR-200. In tumors that had high amounts of synthetically produced IL-8 (designed so that miR-200 could not block it) the cancer burden was no longer reduced. Circulating IL-8 levels in the blood strongly correlated with tumor burden, Pecot said, suggesting it may serve as a possible biomarker for miR-200 treatment.

Treatment of blood vessels cuts metastases by 92 percent

The team then used a chitosan nanoparticle – derived from chitin in the shells of crustaceans – to deliver miR-200 straight to blood vessels. Combination delivery of two types of miR-200 reduced ovarian cancer metastases by 92 percent over controls.

Targeting a second ovarian cancer line with the chitosan nanoparticles also developed by Sood and colleagues, resulted in decreased primary and metastatic tumor burden and reduced blood vessel formation with no apparent toxicity observed in treated mice.

Co-authors with Sood, Pecot and Lopez are Rajesha Rupaimoole, Ph.D., Cristina Ivan, Ph.D., Chunhua Lu, Sherry Wu, Hee-Dong Han, Justin Bottsford-Miller, M.D., Behrouz Zand, M.D., Myrthala Moreno-Smith, Ph.D., Lingegowda Mangala, Ph.D., Ph.D., Morgan Taylor, Ph.D., Healther Dalton, Ph.D.,Yunfei Wen, Ph.D., and Yu Kang, M.D., all of the Gynecologic Oncology; Da Yang, Ph.D., Yuexin Liu, Ph.D., and Wei Zhang, Ph.D., of Pathology; Rehan Akbani, Ph.D., Anna Unruh, and Keith Baggerly, Ph.D., of Bioinformatics and Computational Biology; Maitri Shah, Cristian Rodriguez-Villasana, Ph.D., Vianey Gonzalez-Villasana, Ph.D., and George Calin, M.D., Ph.D., of Experimental Therapeutics; Sang Bae Kim, Vasudha Sehgal, Ph.D., Ju-Seog Lee, Ph.D., Prahlad Ram, Ph.D., and Ana-Maria Gonzalez-Angulo, M.D., of Breast Medical Oncology; Murali Ravoori and Vikas Kundra, M.D., Ph.D., of Experimental Diagnostic Imaging; Li Huang and Xinna Zhang of Cancer Biology; Rouba Ali-Fehmi, M.D., of Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit; and Pierre Massion, M.D., of Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, Tenn.

Sood, Lopez, Xinna Zhang, Wei Zhang, Calin, Mangala and Ivan are also with MD Anderson's Center for RNA Interference and Non-Coding RNA. Sang Bae Kim and Anna Unruh are students in The University of Texas Graduate School of Biomedical Sciences, a joint operation of MD Anderson and The University of Texas Health Science Center at Houston.

This research was funded by grants from the National Cancer Institute of the National Institutes of Health (CA109298, P50 CA083639, P50 CA098258, CA128797, RC2GM092599, U54 CA151668 and

U24CA143835, CA009666, CA90949, CA143883, T32 CA101642, and U24CA143835); the Cancer Prevention and Research Institute of Texas, the Ovarian Cancer Research Fund, Inc., The U.S. Department of Defense, The Marcus Foundation, Inc., Laura Lee Blanton Ovarian Cancer Endowed Fund, the Vanderbilt SPORE in lung cancer ; the 2011 Conquer Cancer Foundation ASCO Young Investigator Award, MD Anderson's Division of Cancer Medicine Advanced Scholar Program, The Cancer Genome Atlas MD Anderson Data Analysis Center, an MD Anderson Odyssey Fellowship, Diane Denson Tobola Fellowship for Ovarian Cancer Research and the Harold C. and Mary L. Dailey Endowment Fellowships.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>