Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile Capsules

15.04.2014

Multifunctional microcapsules made from metals and tannic acid

Microcapsules with a broad spectrum of applications in biomedicine, catalysis, and technology can be produced by using plant-derived, phenolic tannic acid and a variety of metals. The capsules are formed by a simple self-assembly process, and their properties can be controlled through the choice of metal, as demonstrated by a team of Australian and German researchers in the journal Angewandte Chemie.

Metals and organic molecules can combine to form coordination compounds whose structure and properties depend on the components. Examples from nature include the oxygen-binding heme groups in our red blood cells with their central iron atom or the magnesium complex at the heart of photosynthesis. Scientists have also explored the use of these types of compounds to build things, such as networked scaffold structures.

A team from the University of Melbourne, the Baker IDI Heart and Diabetes Institute (Melbourne, Australia), and the University Medical Center Freiburg (Germany), is particularly interested in structures in the form of hollow capsules. Led by Frank Caruso, these researchers haven now been able to demonstrate that a single organic ligand, tannic acid, can coordinate to 18 different metals to form capsules made of metal–phenolic networks (MPNs). The metals are aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, ruthenium, rhodium, cadmium, cerium, europium, gadolinium, and terbium.

... more about:
»ARC »MRI »PET »blood »copper »fluorescence »ions »rhodium »structures

The production method is simple: just mix tannic acid with a solution of the desired metal ion in the presence of a suitable substrate—in this case microparticles. Removal of the substrate leaves behind hollow microcapsules.

The properties of the capsules depend on the type and number of metal ions. For example, capsules with aluminum have a property profile suitable for drug transport: while they are relatively stable at pH values typical of blood, they come apart at the lower pH values found in some cell compartments. They could thus be used to transport a drug though the blood and release it after entering a cell.

Capsules with europium and terbium ions can be used for multicolored fluorescence labeling of biological samples, as well as for technological applications like flexible color displays. Capsules with manganese are highly promising contrast agents for magnetic resonance imaging (MRI). Capsules with radioactive copper isotopes are good tracers for positron emission tomography (PET). Properties like size, shape, and surface chemistry could be tailored to control the distribution of the capsules in the body. Capsules with radioactive copper and europium could allow for tissue samples to undergo PET followed immediately by fluorescence microscopy.

Catalysis is another possible application. The researchers were able to show that capsules with rhodium catalyze the hydrogenation of quinoline at least as well as conventional rhodium catalysts.

About the Author

Frank Caruso is a professor and Australian Research Council (ARC) Laureate Fellow at The University of Melbourne, Australia. He is also a Director of the ARC Centre of Excellence in Convergent Bio-NanoScience and Technology and is a Fellow of the Australian Academy of Science. His research interests focus on developing advanced nano- and biomaterials.

Author: Frank Caruso, University of Melbourne (Australia), http://www.chemeng.unimelb.edu.au/people/staff.php?person_ID=16579

Title: Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201311136

Frank Caruso | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: ARC MRI PET blood copper fluorescence ions rhodium structures

More articles from Life Sciences:

nachricht Results Challenge Conventional Wisdom About Where the Brain Begins Processing Visual Information
04.03.2015 | Vanderbilt University

nachricht Sugar for synthetic cells
04.03.2015 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

70 Nobel laureates and 672 young scientists expected at Lindau

04.03.2015 | Event News

Registration open: 11th X-ray Forum for Customers of GE’s Digital Radiography and Industrial CT Inspection Technologies

04.03.2015 | Event News

ΣYSTEMS INTEGRATION in Finland focusses on high-tech printing

04.03.2015 | Event News

 
Latest News

Flexible and Functional – Prefabricated Façade Elements Simplify Building Renovation

04.03.2015 | Architecture and Construction

Emissions under control: comprehensive exhaust air analysis during laser processing of plastics

04.03.2015 | Ecology, The Environment and Conservation

Graphene, the wonder material, goes textile

04.03.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>