Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile antibiotic found with self-immunity gene on plasmid in staph strain

14.10.2014

A robust, broad spectrum antibiotic, and a gene that confers immunity to that antibiotic are both found in the bacterium Staphylococcus epidermidis Strain 115.

The antibiotic, a member of the thiopeptide family of antibiotics, is not in widespread use, partly due to its complex structure, but the investigators, from Brigham Young University, Provo, Utah, now report that the mechanism of synthesis is surprisingly simple.

"We hope to come up with innovative processes for large-scale production and derivitization so that new, and possibly more potent versions of the antibiotic can become available, says co-corresponding author Joel S. Griffitts. The research is published ahead of print in Journal of Bacteriology.

Strain 115 was originally discovered on turkeys that appeared to have enhanced immunity to bacterial infections. "The motivation behind our current work was a desire to understand the connection between Strain 115 and immunity to disease-causing bacteria," says Griffitts.

It quickly became clear to the investigators that Strain 115 could produce a potent antibiotic that targets a large number of medically relevant bacteria, including those that cause staph infections, strep throat, and severe gastrointestinal diseases. "We wanted to know the identity of this antibiotic and the means by which Strain 115 protects itself from its own antibiotic's deadly effects," says Griffitts.

"We found that the genes for both antibiotic synthesis and self protection in Strain 115 are conveniently clustered on a compact DNA molecule [a plasmid] that replicates itself as a small circle within the cells of Strain 115," says Griffitts. Among experiments they conducted to prove this, they engineered a version of Strain 115 that was missing the plasmid. That version failed to produce both the antibiotic and the immunity to the antibiotic.

The investigators then analyzed the mechanism of immunity. "Thiopeptide antibiotics kill cells by blocking a part of the ribosome," Griffitts explains. Ribosomes, common to all living organisms, are the machines that read the genetic code, producing proteins based on the instructions therein.

The plasmid, which directs the production of the thiopeptide antibiotic, also directs production of a spare part for the ribosome, a replacement for the part that is blocked by the antibiotic, which renders the ribosome insensitive to the antibiotic.

The investigation of Strain 115 began as an undergraduate project, after the bacteria had sat in a laboratory freezer for decades, says Griffitts. "It quickly grew into an effort involving two Ph.D. microbiologists, a talented graduate student, and several analytical biochemists." Hopefully, he says, the research will ultimately enable production of a valuable antibiotic, in quantities sufficient to make a dent in the antibiotic crisis.

###

The article will be published ahead of print on Monday, October 13. Please email ghogan@asmusa.org for a copy of the manuscript.

Journal of Bacteriology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>