Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile antibiotic found with self-immunity gene on plasmid in staph strain

14.10.2014

A robust, broad spectrum antibiotic, and a gene that confers immunity to that antibiotic are both found in the bacterium Staphylococcus epidermidis Strain 115.

The antibiotic, a member of the thiopeptide family of antibiotics, is not in widespread use, partly due to its complex structure, but the investigators, from Brigham Young University, Provo, Utah, now report that the mechanism of synthesis is surprisingly simple.

"We hope to come up with innovative processes for large-scale production and derivitization so that new, and possibly more potent versions of the antibiotic can become available, says co-corresponding author Joel S. Griffitts. The research is published ahead of print in Journal of Bacteriology.

Strain 115 was originally discovered on turkeys that appeared to have enhanced immunity to bacterial infections. "The motivation behind our current work was a desire to understand the connection between Strain 115 and immunity to disease-causing bacteria," says Griffitts.

It quickly became clear to the investigators that Strain 115 could produce a potent antibiotic that targets a large number of medically relevant bacteria, including those that cause staph infections, strep throat, and severe gastrointestinal diseases. "We wanted to know the identity of this antibiotic and the means by which Strain 115 protects itself from its own antibiotic's deadly effects," says Griffitts.

"We found that the genes for both antibiotic synthesis and self protection in Strain 115 are conveniently clustered on a compact DNA molecule [a plasmid] that replicates itself as a small circle within the cells of Strain 115," says Griffitts. Among experiments they conducted to prove this, they engineered a version of Strain 115 that was missing the plasmid. That version failed to produce both the antibiotic and the immunity to the antibiotic.

The investigators then analyzed the mechanism of immunity. "Thiopeptide antibiotics kill cells by blocking a part of the ribosome," Griffitts explains. Ribosomes, common to all living organisms, are the machines that read the genetic code, producing proteins based on the instructions therein.

The plasmid, which directs the production of the thiopeptide antibiotic, also directs production of a spare part for the ribosome, a replacement for the part that is blocked by the antibiotic, which renders the ribosome insensitive to the antibiotic.

The investigation of Strain 115 began as an undergraduate project, after the bacteria had sat in a laboratory freezer for decades, says Griffitts. "It quickly grew into an effort involving two Ph.D. microbiologists, a talented graduate student, and several analytical biochemists." Hopefully, he says, the research will ultimately enable production of a valuable antibiotic, in quantities sufficient to make a dent in the antibiotic crisis.

###

The article will be published ahead of print on Monday, October 13. Please email ghogan@asmusa.org for a copy of the manuscript.

Journal of Bacteriology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>