Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Versatile antibiotic found with self-immunity gene on plasmid in staph strain

14.10.2014

A robust, broad spectrum antibiotic, and a gene that confers immunity to that antibiotic are both found in the bacterium Staphylococcus epidermidis Strain 115.

The antibiotic, a member of the thiopeptide family of antibiotics, is not in widespread use, partly due to its complex structure, but the investigators, from Brigham Young University, Provo, Utah, now report that the mechanism of synthesis is surprisingly simple.

"We hope to come up with innovative processes for large-scale production and derivitization so that new, and possibly more potent versions of the antibiotic can become available, says co-corresponding author Joel S. Griffitts. The research is published ahead of print in Journal of Bacteriology.

Strain 115 was originally discovered on turkeys that appeared to have enhanced immunity to bacterial infections. "The motivation behind our current work was a desire to understand the connection between Strain 115 and immunity to disease-causing bacteria," says Griffitts.

It quickly became clear to the investigators that Strain 115 could produce a potent antibiotic that targets a large number of medically relevant bacteria, including those that cause staph infections, strep throat, and severe gastrointestinal diseases. "We wanted to know the identity of this antibiotic and the means by which Strain 115 protects itself from its own antibiotic's deadly effects," says Griffitts.

"We found that the genes for both antibiotic synthesis and self protection in Strain 115 are conveniently clustered on a compact DNA molecule [a plasmid] that replicates itself as a small circle within the cells of Strain 115," says Griffitts. Among experiments they conducted to prove this, they engineered a version of Strain 115 that was missing the plasmid. That version failed to produce both the antibiotic and the immunity to the antibiotic.

The investigators then analyzed the mechanism of immunity. "Thiopeptide antibiotics kill cells by blocking a part of the ribosome," Griffitts explains. Ribosomes, common to all living organisms, are the machines that read the genetic code, producing proteins based on the instructions therein.

The plasmid, which directs the production of the thiopeptide antibiotic, also directs production of a spare part for the ribosome, a replacement for the part that is blocked by the antibiotic, which renders the ribosome insensitive to the antibiotic.

The investigation of Strain 115 began as an undergraduate project, after the bacteria had sat in a laboratory freezer for decades, says Griffitts. "It quickly grew into an effort involving two Ph.D. microbiologists, a talented graduate student, and several analytical biochemists." Hopefully, he says, the research will ultimately enable production of a valuable antibiotic, in quantities sufficient to make a dent in the antibiotic crisis.

###

The article will be published ahead of print on Monday, October 13. Please email ghogan@asmusa.org for a copy of the manuscript.

Journal of Bacteriology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>