Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ventilation for corals: Symbiosis with damselfish brings great advantages for coral growth

19.05.2017

Many stony corals live in close partnership with different species of damselfish. Reef ecologists from the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen (Germany) have now taken a closer look at this symbiosis and discovered a previously unknown advantage for the corals. The fish support the corals in their photosynthesis, which is important for coral growth. The study has just been published in the Journal of Experimental Biology and was also featured in Nature Magazine’s research highlights.

Coral reefs are highly complex communities with multifaceted interrelations and dependencies, many of which are not yet thoroughly studied. The mutually beneficial symbiosis between clownfish and anemones is well known: the fish provide nutrients to their host while at the same time finding a place to hide from predators inside the anemone.


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research

The same advantages are attributed to the symbiosis between damselfish and stony corals. It is strikingly noticeable, however, how tirelessly the damselfish flick their fins when they are hiding among the coral branches. They display this behaviour not just during the day, but also whilst sleeping at night.

Ecologist Nur Garcia and her colleagues from the ZMT have studied this symbiosis in more details. In the Red Sea near Eilat (Israel) they observed the damselfish, Dascyllus marginatus, which frequently resides inside colonies of the branching Stylophora pistillata coral. “More than 30% of the fish’s time is spent among the coral branches”, explains Garcia. “Often a dozen damselfish or more are gathering like a cloud above the football-sized coral.”

In the lab the scientists brought fish and corals together in a respiration chamber to measure respiration and photosynthesis rates. Garcia obtained some unexpected results: Even a single damselfish intermittently visiting the coral increased the photosysnthesis rate of Stylophora by up to 6% a day. Corals that live in symbiosis with damselfish can thus potentially grow considerably faster.

Tiny algae living inside the tissue of stony corals are responsible for the photosynthesis. Their products such as high-energy sugars are beneficial for the corals, allowing them to build the large calcium carbonate structures typical for tropical reefs. During the night corals take up oxygen, in the daytime they emit it during photosynthesis. If an excess of oxygen accumulates, a particular enzyme essential for photosynthesis is inhibited in its activity.

“By flicking its fins the damselfish improve the water circulation as well as the supply and removal of oxygen, which is extremely important in areas of low flow such as lagoons enclosed by reefs,” says Dr. Sebastian Ferse, a reef ecologist who headed the study at the ZMT.

The symbiosis could also have a positive effect during coral bleaching. Stressful conditions such as increased water temperatures can lead to the production of oxygen radicals by the coral, which foster bleaching. The fin flicking can aid in the removal of such radicals.

“However, increased overfishing could spell doom for the symbiosis”, cautions Ferse. “If damselfish predators, i.e. bigger fish, are increasingly caught, the damselfish do not need to hide among the corals any longer."

"The symbiotic damselfish are also popular ornamental fish and are caught for the marine aquarium trade. In the Thousand Islands archipelago near Jakarta several species have already disappeared,” says Ferse.

Contact:
Dr. Sebastian Ferse | Leiter AG Nutzung, Resilienz und Diversität von Korallenriffen
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: sebastian.ferse@leibniz-zmt.de | Tel: 0421 - 238 00-28
Bis Montag, den 22.5.17 zu erreichen unter: 0049 (0) 157 72379259

Dr. Susanne Eickhoff | Presse-und Öffentlichkeitsarbeit
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: susanne.eickhoff@leibniz-zmt.de | Tel: 0421 - 238 00-37

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Weitere Informationen:

http://jeb.biologists.org/content/220/10/1803
https://www.nature.com/articles/n-12293530

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

Further reports about: Marine Photosynthesis Tropenforschung ZMT coastal ecosystems coral growth ecosystems

More articles from Life Sciences:

nachricht How cancer cells flood the lung
19.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Light Exposure in the Evening Improves Performance in the Final Spurt
19.05.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

Im Focus: Laser pulses reveal the superconductors of the future

Thanks to innovative laser techniques, a class of materials shows a new potential for energy efficiency. The research is published in Nature Physics

Another step forward towards superconductivity at room temperature: an experiment at the cutting edge of condensed matter physics and materials science has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

Aerogels - the world's lightest solids: International project meeting of NanoHybrids at TUHH

15.05.2017 | Event News

 
Latest News

Graphene-nanotube hybrid boosts lithium metal batteries

19.05.2017 | Materials Sciences

Antibodies from Ebola survivor protect mice and ferrets against related viruses

19.05.2017 | Health and Medicine

Sea level as a metronome of Earth's history

19.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>