Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ventilation for corals: Symbiosis with damselfish brings great advantages for coral growth

19.05.2017

Many stony corals live in close partnership with different species of damselfish. Reef ecologists from the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen (Germany) have now taken a closer look at this symbiosis and discovered a previously unknown advantage for the corals. The fish support the corals in their photosynthesis, which is important for coral growth. The study has just been published in the Journal of Experimental Biology and was also featured in Nature Magazine’s research highlights.

Coral reefs are highly complex communities with multifaceted interrelations and dependencies, many of which are not yet thoroughly studied. The mutually beneficial symbiosis between clownfish and anemones is well known: the fish provide nutrients to their host while at the same time finding a place to hide from predators inside the anemone.


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research


Red Sea dascyllus among the branches of a Stylophora coral

Nur Garcia, Leibniz Centre for Tropical Marine Research

The same advantages are attributed to the symbiosis between damselfish and stony corals. It is strikingly noticeable, however, how tirelessly the damselfish flick their fins when they are hiding among the coral branches. They display this behaviour not just during the day, but also whilst sleeping at night.

Ecologist Nur Garcia and her colleagues from the ZMT have studied this symbiosis in more details. In the Red Sea near Eilat (Israel) they observed the damselfish, Dascyllus marginatus, which frequently resides inside colonies of the branching Stylophora pistillata coral. “More than 30% of the fish’s time is spent among the coral branches”, explains Garcia. “Often a dozen damselfish or more are gathering like a cloud above the football-sized coral.”

In the lab the scientists brought fish and corals together in a respiration chamber to measure respiration and photosynthesis rates. Garcia obtained some unexpected results: Even a single damselfish intermittently visiting the coral increased the photosysnthesis rate of Stylophora by up to 6% a day. Corals that live in symbiosis with damselfish can thus potentially grow considerably faster.

Tiny algae living inside the tissue of stony corals are responsible for the photosynthesis. Their products such as high-energy sugars are beneficial for the corals, allowing them to build the large calcium carbonate structures typical for tropical reefs. During the night corals take up oxygen, in the daytime they emit it during photosynthesis. If an excess of oxygen accumulates, a particular enzyme essential for photosynthesis is inhibited in its activity.

“By flicking its fins the damselfish improve the water circulation as well as the supply and removal of oxygen, which is extremely important in areas of low flow such as lagoons enclosed by reefs,” says Dr. Sebastian Ferse, a reef ecologist who headed the study at the ZMT.

The symbiosis could also have a positive effect during coral bleaching. Stressful conditions such as increased water temperatures can lead to the production of oxygen radicals by the coral, which foster bleaching. The fin flicking can aid in the removal of such radicals.

“However, increased overfishing could spell doom for the symbiosis”, cautions Ferse. “If damselfish predators, i.e. bigger fish, are increasingly caught, the damselfish do not need to hide among the corals any longer."

"The symbiotic damselfish are also popular ornamental fish and are caught for the marine aquarium trade. In the Thousand Islands archipelago near Jakarta several species have already disappeared,” says Ferse.

Contact:
Dr. Sebastian Ferse | Leiter AG Nutzung, Resilienz und Diversität von Korallenriffen
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: sebastian.ferse@leibniz-zmt.de | Tel: 0421 - 238 00-28
Bis Montag, den 22.5.17 zu erreichen unter: 0049 (0) 157 72379259

Dr. Susanne Eickhoff | Presse-und Öffentlichkeitsarbeit
Leibniz-Zentrum für Marine Tropenforschung (ZMT)
Email: susanne.eickhoff@leibniz-zmt.de | Tel: 0421 - 238 00-37

About the Leibniz Centre for Tropical Marine Research
In research and education the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen is dedicated to the better understanding of tropical coastal ecosystems. As an interdisciplinary Leibniz institute the ZMT conducts research on the structure and functioning of tropical coastal ecosystems and their reaction to natural changes and human interactions. It aims to provide a scientific basis for the protection and sustainable use of these ecosystems. The ZMT works in close cooperation with partners in the tropics, where it supports capacity building and the development of infrastructures in the area of sustainable coastal zone management. The ZMT is a member of the Leibniz Association.

Weitere Informationen:

http://jeb.biologists.org/content/220/10/1803
https://www.nature.com/articles/n-12293530

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

Further reports about: Marine Photosynthesis Tropenforschung ZMT coastal ecosystems coral growth ecosystems

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>