Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU researchers identify changes in cholesterol metabolic pathways

08.06.2012
A new study from the Virginia Commonwealth University School of Medicine has identified molecular changes responsible for abnormal cholesterol production and metabolism in the livers of patients with a common liver condition, and these changes may explain the severity of a patient's liver disease and risks to their heart health.

It is estimated that a third of Americans have a fatty liver. Nonalcoholic fatty liver disease is a very common liver condition. Nonalcoholic steatohepatitis, or NASH, the more aggressive form of nonalcoholic fatty liver disease, is associated with increased cardiac risk and liver-related mortality.

The VCU findings may provide researchers with potential new targets for treatment and also allow clinicians to further refine how they assess cardiovascular risk and develop ways to reduce it in individuals with a more aggressive form of nonalcoholic fatty liver disease called nonalcoholic steatohepatitis, or NASH.

In the study, published in the May issue of Cell Metabolism, the team has shown that there is not only increased production of cholesterol but a decreased expression of the receptor that takes up cholesterol from the blood. This would be expected to both enhance cholesterol output from the liver and reduce its removal, thereby making it more available to enter blood vessels and contribute to cardiovascular disease. The liver not only makes cholesterol, but also takes up cholesterol from the blood.

"This indicates that there is excessive cholesterol production in the liver when one develops fatty liver disease," said lead investigator Arun Sanyal, M.D., professor and chair in the Division of Gastroenterology, Hepatology and Nutrition in the VCU School of Medicine.

"This may be important both to drive the disease towards cirrhosis and to increase the risks of heart disease in those with fatty liver disease," said Sanyal.

Sanyal collaborated with VCU colleagues in the VCU Division of Gastroenterology, Hepatology and Nutrition, the Department of Surgery and the Department of Pathology.

The work was supported in part by grants from the National Institutes of Health, grant numbers: 5R01DK081410-03, K24 DK 02755 and T32 DK-007150-33.

EDITOR'S NOTE: A copy of the study is available for reporters by contacting the journal at press@cell.com.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>