Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


VCU researchers identify changes in cholesterol metabolic pathways

A new study from the Virginia Commonwealth University School of Medicine has identified molecular changes responsible for abnormal cholesterol production and metabolism in the livers of patients with a common liver condition, and these changes may explain the severity of a patient's liver disease and risks to their heart health.

It is estimated that a third of Americans have a fatty liver. Nonalcoholic fatty liver disease is a very common liver condition. Nonalcoholic steatohepatitis, or NASH, the more aggressive form of nonalcoholic fatty liver disease, is associated with increased cardiac risk and liver-related mortality.

The VCU findings may provide researchers with potential new targets for treatment and also allow clinicians to further refine how they assess cardiovascular risk and develop ways to reduce it in individuals with a more aggressive form of nonalcoholic fatty liver disease called nonalcoholic steatohepatitis, or NASH.

In the study, published in the May issue of Cell Metabolism, the team has shown that there is not only increased production of cholesterol but a decreased expression of the receptor that takes up cholesterol from the blood. This would be expected to both enhance cholesterol output from the liver and reduce its removal, thereby making it more available to enter blood vessels and contribute to cardiovascular disease. The liver not only makes cholesterol, but also takes up cholesterol from the blood.

"This indicates that there is excessive cholesterol production in the liver when one develops fatty liver disease," said lead investigator Arun Sanyal, M.D., professor and chair in the Division of Gastroenterology, Hepatology and Nutrition in the VCU School of Medicine.

"This may be important both to drive the disease towards cirrhosis and to increase the risks of heart disease in those with fatty liver disease," said Sanyal.

Sanyal collaborated with VCU colleagues in the VCU Division of Gastroenterology, Hepatology and Nutrition, the Department of Surgery and the Department of Pathology.

The work was supported in part by grants from the National Institutes of Health, grant numbers: 5R01DK081410-03, K24 DK 02755 and T32 DK-007150-33.

EDITOR'S NOTE: A copy of the study is available for reporters by contacting the journal at

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see

Sathya Achia Abraham | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>