Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU Massey first to combine targeted agents to kill multiple myeloma cells

11.02.2011
Scientists at Virginia Commonwealth University Massey Cancer Center have developed a novel treatment strategy for multiple myeloma that pairs two targeted agents to kill cancer cells. The study's findings, published in today's edition of the journal "Blood," are the first to demonstrate the synergistic, anti-myeloma effects of this combination regimen both in vitro and in vivo.

Multiple myeloma is a cancer involving antibody-producing cells in the bone marrow, and, in most cases, is incurable. Targeted therapies work by interfering with biological and biochemical functions critical for cancer cell survival and proliferation.

The new treatment strategy from VCU Massey combines Src inhibitors, which block the activity of an important group of proteins that regulate cancer cell behavior, with Chk1 inhibitors, which interfere with cancer cells' ability to undergo cell cycle arrest and repair DNA damage.

"Chk1 inhibitors are currently used primarily in conjunction with conventional DNA-damaging chemotherapeutic agents," says the study's lead investigator Steven Grant, M.D., associate director for translational research, Shirley Carter and Sture Gordon Olsson Chair in Oncology Research and professor of internal medicine at VCU Massey Cancer Center. "By combining Chk1 inhibitors with another targeted agent, such as Src inhibitors, we were able to induce cell death in multiple myeloma cells while sparing healthy, normal cells."

When multiple myeloma cells are subjected to DNA-damaging agents, or even when they are undergoing normal DNA replication, their DNA is subject to breakage. To survive, they must slow down their progression through the cell cycle in order to repair the DNA, or, if the damage is too severe, undergo a form of cell suicide.

Chk1 is an enzyme that allows cells to undergo cell cycle arrest, a process required to repair the DNA damage. When cancer cells are exposed to Chk1 inhibitors, they experience DNA damage and, as a consequence, launch another defense mechanism by activating a protein known as ERK1/2.

"The activation of ERK1/2 explains why multiple myeloma cells are able to survive the lethal effects of Chk1 inhibitors," says Grant. "Therefore, we used Src inhibitors to block the activation of ERK1/2." The results were more promising than even the researchers had hoped.

Grant's team discovered that Src inhibitors not only blocked ERK1/2 activation, but also synergized with Chk1 inhibitors to trigger a dramatic increase in cell death. In addition, the combined treatment greatly reduced blood vessel formation, which plays an important role in the maintenance of many tumors, including multiple myeloma. Significantly, the treatment exerted virtually no effects on healthy, normal cells.

"We found tumors treated with the combined regimen were noticeably smaller and showed signs of a lack of blood supply when compared to tumors from the control group or those treated only with Chk1 inhibitors," says Grant. "This study is not only the first to demonstrate that Src inhibitors can dramatically increase the effects of Chk1 inhibitors, but it is also the first to show that preventing blood vessel formation may contribute to the effectiveness of this combination strategy."

This study builds upon more than seven years of research by Grant's team investigating cell signaling in relation to DNA damage repair and survival pathways involving Src and ERK1/2 proteins. The researchers are now developing more complex experiments as a prelude to clinical trials in multiple myeloma patients. "We're hopeful the approach of combining targeted agents will open up the possibility of developing entirely new therapies for patients with multiple myeloma and potentially other blood cancers," says Grant.

Co-investigators included the study's first author, Yun Dai, M.D., Ph.D., Shuang Chen, M.D., Ph.D., and Xinyan Pei, M.D., all from the VCU Department of Internal Medicine; and Paul Dent, Ph.D., Universal Distinguished Professor in Cancer Cell Signaling at VCU Massey. Funding for the study was provided by grants from the National Cancer Institute, the Multiple Myeloma Foundation, the V Foundation for Cancer Research and a Specialized Programs of Research Excellent (SPORE) award.

The full journal article is available online at: http://bloodjournal.hematologylibrary.org/cgi/content/short/blood-2010-06-291146v1.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>