Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vascular marker of ovarian cancer identified

24.09.2008
Researchers have identified TEM1 as a specific genetic marker for the vascular cells associated with tumor growth, a finding that could aid in diagnosis and treatment of ovarian cancer.

"The laboratory of Dr. George Coukos is developing novel treatments for ovarian cancer which target the vasculature surrounding the tumor, thereby disrupting the blood supply needed for the tumor to grow," said Chunsheng Li, Ph.D., a post-doctoral research fellow at the University of Pennsylvania Ovarian Cancer Research Center.

Li presented his findings at the American Association for Cancer Research Molecular Diagnostics in Cancer Therapeutic Development meeting being held here September 22-25, 2008.

Ovarian cancer is the deadliest gynecologic cancer in the United States, largely due to the fact that there are no reliable methods for detecting ovarian cancer at an early stage, when cure is still possible. Li and colleagues found that high levels of TEM1 were correlated with decreased survival of ovarian cancer patients. Furthermore, all 52 samples of ovarian cancer examined were positive for TEM1 in the vasculature, while none of the control samples tested positive. This suggests that TEM1 is a specific marker for ovarian cancer, which may lead to a potential screening tool.

Li and colleagues have been addressing TEM1's diagnostic value both in vitro and in vivo. In vitro, they used polymerase chain reaction and immunohistochemistry analyses to determine the relative levels of human TEM1 expression in ovarian cancer versus healthy human samples, and in vivo they developed PET imaging studies. Li's preliminary in vivo experiments with a new mouse model implanted with tumor vasculature that expresses human TEM1, demonstrated by PET imaging that a novel anti-TEM1 radiolabel probe could specifically detect a small number of TEM1-expresser cells.

Li said the specific expression of TEM1 by ovarian cancer tumor vasculature, is linked to poor prognosis and the development of new tools able to detect a small number of TEM1-expresser cells in vivo, will allow clinicians to more effectively target the tumor vasculature for diagnostic purposes as well as for treatments that could help halt the disease.

"This will have to be borne out in further studies, but if we can normalize the vasculature surrounding the tumor, we will have a better chance of eradicating the tumor," said Li.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>