Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variations in One Gene May be Associated with Endurance Running

17.02.2010
A few minor variations in one gene may make a difference in athletic endurance, according to a new study from Physiological Genomics.

The study found that elite endurance athletes were more likely to have variations of the NRF2 gene than elite sprinters. Non-elite endurance athletes were also more likely to have the genetic variations compared to sprinters, although the difference was not as pronounced.

The study shows an association between the gene variation and endurance, but does not establish a cause-effect relationship. Future studies are needed to unravel exactly what role the gene plays in athletic performance. The study is part of a larger body of research that is exploring the human genome and which aims to understand the genetic underpinnings of athletic performance.

Although the human genome is relatively uniform, there are variations among individuals. The researchers investigated the NRF2 gene because previous studies have shown that it may play a role in endurance performance because it:

· helps produce new mitochondria, a key cellular structure that produces energy
· reduces the harmful effects of oxidation and inflammation, which increase during exercise

“These findings suggest that harboring this specific genotype might increase the probability of being an endurance athlete,” said one of the authors, Nir Eynon of Wingate Institute in Israel. The study, “Interaction between SNPs in the NRF2 gene and elite endurance performance,” was carried out by Dr. Eynon, Alberto Jorge Alves, Moran Sagiv, Chen Yamin, Prof. Michael Sagiv and Dr. Yoav Meckel. All are at the Wingate Institute except for Alberto Alves, who is with the University of Porto in Portugal. The American Physiological Society (www.the-APS.org) published the study.

The Study
The study examined 155 track and field athletes who had competed in national or international track and field competitions. The athletes were further subdivided into endurance group (10,000 meter and marathon runners) and a sprint group (100- and 200-meter and long jump). The control group consisted of 240 non-athletic healthy individuals.

These groups were further divided into elite-level (those who had represented Israel in the world track and field championships or in the Olympics) and national-level (those who had competed in national competitions, but not international).

The study found that two variations in the NRF2 gene (specifically, the NRF2 A allele and the NRF2 C/T genotype) occurred more often in endurance athletes than in sprinters. “Eighty percent of the elite-level endurance athletes were carrying the A allele of the NRF2 A/C single nucleotide protein, compared to only 46% of the elite-level sprinters,” Nir. Eynon said. The study also found that the combined NRF2 AA+ NRF2 C/T genotype was more frequent in endurance athletes than in the sprinters group and the control group.

“So,” concludes Eynon, “some of us are truly born to run.”

Editor’s Notes: To arrange an e-mail interview with Dr. Eynon or to receive a copy of the study, please contact Donna Krupa (301) 634-7209 or at dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Donna Krupa | Newswise Science News
Further information:
http://www.the-aps.org

Further reports about: Eynon NRF2 NRF2 gene endurance genetic variation human genome

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>