Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variations in 5 genes raise risk for most common brain tumors

07.07.2009
Genomewide study finds first genetic factors in development of gliomas

Common genetic variations spread across five genes raise a person's risk of developing the most frequent type of brain tumor, an international research team reports online in Nature Genetics.

Genetic risk factors identified by the research team, led by scientists at The University of Texas M. D. Anderson Cancer Center and the Institute of Cancer Research in the United Kingdom, also are the first glioma risk factors of any type identified in a large study.

"This is a ground-breaking study because it's the first time we've had a large enough sample to understand the genetic risk factors related to glioma, which opens the door to understanding a possible cause of these brain tumors," said co-senior author Melissa Bondy, Ph.D., professor in M. D. Anderson's Department of Epidemiology.

Bondy and colleagues expect their findings eventually to help identify people most at risk for the disease and to provide potential targets for treatment or prevention.

Gliomas, deadly tumors that form in the supportive tissue of the brain and spine, account for about 80 percent of all primary malignant brain tumors, with about 22,000 new cases annually in the United States and 13,000 deaths. They include astrocytomas, oligodendrogliomas and glioblastoma multiforme, the most aggressive, deadly and common glioma in adults.

Risk rises with each variation

The top variations in each of the five genes individually raise a person's glioma risk by 18, 24, 27, 28 and 36 percent over someone without the variations. The team found the effects are independent of one another, so risk escalates with the number of genes involved. People with eight or more of the 14 risk variations discovered on the five genes have a three-fold risk of developing glioma.

Even though this is the largest genetic study of a rare cancer, and thus provides a high degree of statistical confidence in the findings, co-first author Sanjay Shete, Ph.D., associate professor of epidemiology at M. D. Anderson, cautions that it's too early to screen people for risk using these variations alone.

Additional research is needed on the genes involved and how variation affects their function and contributes to development of gliomas. And the disease is not solely genetic. A more comprehensive model that includes demographic and behavioral factors and environmental exposures will be needed to identify those at risk.

Bondy will be principal investigator on a multi-center research project that will examine the complex interplay of all of those factors in 6,000 glioma patients and 6,000 controls beginning next year. "We will be able to look at all of the potential risk and protective factors we've identified in much smaller studies over the years, such as exposure to ionizing radiation, allergies, infections, and use of non-steroidal anti-inflammatory drugs, in a much larger study that will include the genes involved," Bondy said.

Combing through 521,571 variations to find 14

Researchers from M. D. Anderson and the Institute of Cancer Research analyzed 521,571 single nucleotide polymorphisms (SNPS) - points in the genome known to commonly vary from person to person - in 1,878 glioma patients and 3,670 controls. They discovered 34 SNPS with evidence of association with glioma.

These 34 were then analyzed in independent case-control studies in Germany, France and Sweden that examined 2,545 cases of glioma and 2,973 controls. The combined analysis winnowed the candidates down to 14 SNPS that mapped to five addresses in the genome.

The five genes identified, listed in descending order by their strongest effect, are:

CCDC26, located on chromosome 8, modulates retinoic acid, which in turn increases programmed cell death in glioblastoma cells and reduces telomerase activity (see next).

TERT, found on chromosome 5, is essential for telomerase activity that preserves telomeres, which are found on the ends of chromosomes and prevent them from unraveling. TERT expression in tumors has been associated with tumor grade and prognosis.

CDKN2A, located on chromosome 9, regulates p14, which activates the tumor-suppressor p53. It also regulates cyclin-dependent kinases vital to the cell cycle. At least one copy of the gene is deleted in half of brain tumors, and loss of CDKN2A expression is associated with poor prognosis.

RTEL1, found on chromosome 20, maintains genomic stability. Its chromosomal address is amplified in 30 percent of gliomas.

PHLDB1, on chromosome 11, is commonly deleted in neuroblastoma but there is no evidence to date of a role for the gene in glioma.

The fact that four of the genetic variations found in a person's genome point to a gene that has been associated in some way with the genome of the tumors is an encouraging sign, Shete said.

"I've been collecting families and case studies since the early 90s," Bondy said. "We have only just begun to understand the causes of brain tumors. Our findings give reasons for hope for those who might be affected and an incentive for a more comprehensive investigation of what has been a mysterious disorder."

The Wellcome Trust provided principal funding for the study. Additional sources include Cancer Research UK, the European Union, grants from the U.S. National Cancer Institute, the American Brain Tumor Association and the National Brain Tumor Society.

Co-authors with Bondy and Shete are co-senior author Richard Houlston and co-first author Fay Hoskings, Lindsay B Robertson, Sara E Dobbins, and Amy Price, all of Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey. U.K.; Georgina Armstrong, Yanhong Liu, and Xiangjun Gu of M. D. Anderson's Department of Epidemiology; Marc Sanson, Yannick Marie, Blandine Boisselier, Jean-Yves Delattre, Khe Hoang-Xuan, Soufiane El Hallani and Ahmed Idbaih, all of Service de Neurologie Mazarin et INSERM, Hôpital de la Salpêtrière in Paris; Beatrice Malmer, Ulrika Andersson and Roger Henriksson, of Department of Radiation Sciences, Oncology, Umeå University, Sweden; Matthias Simon and Johannes Schramm of Neurochirurgische Universitätsklinik, Bonn, Germany; Diana Zelenika and Mark Lathrop of Centre National de Génotypage, Evry Cedex, France; Lathrop also is affiliated with Foundation Jean Dausett-CEPH, Paris; A Tommy Bergenheim, and Anders Ahlbom of Department of Clinical Neuroscience, Umeå University, Sweden; Maria Feychting of Institute of Environmental Medicine, Karolinska Institutet, Sweden; Stefan Lönn of the Department of Medical Epidemiology and Biostatistics Karolinska Institutet, Sweden; Michael Linnebank of the Department of Neurology, University Hospital Zurich, Switzerland; Kari Hemminki and Rajiv Kumar both of the Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany; Sarah Hepworth of Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, UK; Kenneth Muir of the Division of Epidemiology and Public Health, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; Minouk Schoemaker Section of Epidemiology, Institute of Cancer Research, Sutton, UK; and Ching Lau of Texas Children's Cancer Center, Baylor College of Medicine, Houston.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>